Suppr超能文献

基于数据驱动的方法预测大肠杆菌的进化。

Predicting the evolution of Escherichia coli by a data-driven approach.

机构信息

Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.

Genome Center, University of California, Davis, Davis, CA, 95616, USA.

出版信息

Nat Commun. 2018 Sep 3;9(1):3562. doi: 10.1038/s41467-018-05807-z.

Abstract

A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments.

摘要

进化生物学中一个诱人的问题是,进化是否可以从过去的经验中预测。为了解决这个问题,我们在 178 种不同的环境条件下为细菌大肠杆菌创建了一个包含 15000 多个突变事件的连贯纲要。纲要分析提供了对探索环境、突变热点和突变共现的全面了解。虽然所有重复实验中共享的突变随着重复实验次数的增加而减少,但我们的结果表明,无论重复实验次数如何,成对重叠率保持不变。在突变纲要上训练的一组预测因子,并在 35 次进化重复实验的正向验证中进行测试,在预测突变靶标方面实现了 49.2±5.8%(平均值±标准差)的精度和 34.5±5.7%的召回率。这项工作展示了如何利用综合数据集在基因水平上创建进化的预测模型,并阐明了在明确定义的环境中进化过程的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dfb/6120903/cc469e20edb9/41467_2018_5807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验