State Key Laboratory of Chem/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China.
Western Australian School of Mines: Minerals, Energy and Chemical Engineering and Fuels and Energy Technology Institute, Curtin University, Perth, Western Australia, 6102, Australia.
Nat Commun. 2018 Sep 3;9(1):3572. doi: 10.1038/s41467-018-05580-z.
The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO shows a limiting current density of ~35.3 mA cm and durability of over 100 h at 10 mA cm in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO protection layer. These findings have significant suggestions for further development of silicon-based, III-V compounds and other photoelectrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices.
光电电极效率和稳定性之间的权衡严重阻碍了基于硅的光电化学器件的实际应用。在这里,我们报告了一种通过使用具有分级氧缺陷的结晶 TiO 作为保护层来解耦基于硅的光电阴极权衡的简便方法。结晶保护层提供高密度结构并增强稳定性,同时氧缺陷允许载流子以低电阻传输,这是高效率所需要的。具有黑色 TiO 的基于硅的光电阴极在 1.0 M NaOH 电解质中在 10 mA cm 时显示出约 35.3 mA cm 的极限电流密度和超过 100 小时的耐久性,而在结晶 TiO 保护层中则没有观察到光电化学行为。这些发现对进一步开发基于硅的 III-V 化合物和其他光电极具有重要意义,并为实现高效和持久的光电化学器件提供了可能性。