Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
Tokyo Electron Limited, Technology Development Center, 650, Hosaka-cho Mitsuzawa, Nirasaki, Yamanashi 407-0192, Japan.
Nat Mater. 2016 Jan;15(1):99-105. doi: 10.1038/nmat4451. Epub 2015 Oct 19.
Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+)n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.
用于光阳极的金属氧化物保护层可以实现大规模太阳能燃料和太阳能化学合成,但迄今为止报道的光电电压通常较差,这将严重限制其性能。在这里,我们报告了一种与保护层引起的电荷提取势垒相关的光电电压损失的新观察结果,并通过消除该势垒,实现了高达 630mV 的光电电压,这是迄今为止报道的用于水分解硅光阳极的最高光电电压。通过与掩埋结 p(+)n 电池相比,在金属-绝缘体-半导体肖特基结电池中系统地探测了损失机制,揭示了需要在半导体/绝缘体界面处保持特征空穴密度。与保护氧化物介电特性相关的漏电电容器模型解释了这种损耗,与数据吻合得非常好。从这些发现中,我们制定了同时优化内置场、界面质量和空穴提取的设计原则,以最大化氧化物保护的水分解阳极的光电电压。