Ottawa Combined Adult Spinal Surgery Program, The Ottawa Hospital, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada; Division of Orthopaedic Surgery, Department of Surgery, Faculty of Medicine, University of Ottawa, The Ottawa Hospital, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada; Clinical Epidemiology Program, The Ottawa Hospital,, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.
Ottawa Combined Adult Spinal Surgery Program, The Ottawa Hospital, 1053 Carling Ave, Ottawa, ON K1Y 4E9, Canada.
Spine J. 2019 Apr;19(4):703-710. doi: 10.1016/j.spinee.2018.08.016. Epub 2018 Sep 1.
Models for predicting recovery in traumatic spinal cord injury (tSCI) patients have been developed to optimize care. Several models predicting tSCI recovery have been previously validated, yet recent findings question their accuracy, particularly in patients whose prognoses are the least predictable.
To compare independent ambulatory outcomes in AIS (ASIA [American Spinal Injury Association] Impairment Scale) A, B, C, and D patients, as well as in AIS B+C and AIS A+D patients by applying two existing logistic regression prediction models.
A prospective cohort study.
Individuals with tSCI enrolled in the pan-Canadian Rick Hansen SCI Registry (RHSCIR) between 2004 and 2016 with complete neurologic examination and Functional Independence Measure (FIM) outcome data.
The FIM locomotor score was used to assess independent walking ability at 1-year follow-up.
Two validated prediction models were evaluated for their ability to predict walking 1-year postinjury. Relative prognostic performance was compared with the area under the receiver operating curve (AUC).
In total, 675 tSCI patients were identified for analysis. In model 1, predictive accuracies for 675 AIS A, B, C, and D patients as measured by AUC were 0.730 (95% confidence interval [CI] 0.622-0.838), 0.691 (0.533-0.849), 0.850 (0.771-0.928), and 0.516 (0.320-0.711), respectively. In 160 AIS B+C patients, model 1 generated an AUC of 0.833 (95% CI 0.771-0.895), whereas model 2 generated an AUC of 0.821 (95% CI 0.754-0.887). The AUC for 515 AIS A+D patients was 0.954 (95% CI 0.933-0.975) with model 1 and 0.950 (0.928-0.971) with model 2. The difference in prediction accuracy between the AIS B+C cohort and the AIS A+D cohort was statistically significant using both models (p=.00034; p=.00038). The models were not statistically different in individual or subgroup analyses.
Previously tested prediction models demonstrated a lower predictive accuracy for AIS B+C than AIS A+D patients. These models were unable to effectively prognosticate AIS A+D patients separately; a failure that was masked when amalgamating the two patient populations. This suggests that former prediction models achieved strong prognostic accuracy by combining AIS classifications coupled with a disproportionately high proportion of AIS A+D patients.
为了优化护理,已经开发了用于预测创伤性脊髓损伤(tSCI)患者康复的模型。已经验证了几个预测 tSCI 恢复的模型,但最近的研究结果对其准确性提出了质疑,尤其是在那些预后最不可预测的患者中。
通过应用两种现有的逻辑回归预测模型,比较 AIS(美国脊髓损伤协会损伤量表)A、B、C 和 D 患者以及 AIS B+C 和 AIS A+D 患者的独立步行结局。
前瞻性队列研究。
2004 年至 2016 年间在全加里克汉森 SCI 登记处(RHSCIR)登记的患有 tSCI 的个体,具有完整的神经检查和功能独立性测量(FIM)结局数据。
FIM 运动评分用于评估 1 年随访时的独立步行能力。
评估了两种经过验证的预测模型在预测损伤后 1 年行走的能力。使用接收者操作特征曲线(AUC)下的面积比较相对预后性能。
共分析了 675 例 tSCI 患者。在模型 1 中,根据 AUC,675 例 AIS A、B、C 和 D 患者的预测准确性分别为 0.730(95%置信区间 [CI] 0.622-0.838)、0.691(0.533-0.849)、0.850(0.771-0.928)和 0.516(0.320-0.711)。在 160 例 AIS B+C 患者中,模型 1 生成的 AUC 为 0.833(95%CI 0.771-0.895),而模型 2 生成的 AUC 为 0.821(95%CI 0.754-0.887)。模型 1 对 515 例 AIS A+D 患者的 AUC 为 0.954(95%CI 0.933-0.975),模型 2 为 0.950(95%CI 0.928-0.971)。使用两种模型,AIS B+C 队列和 AIS A+D 队列之间的预测准确性差异均具有统计学意义(p=.00034;p=.00038)。在个体或亚组分析中,模型之间没有统计学差异。
先前测试的预测模型对 AIS B+C 患者的预测准确性低于 AIS A+D 患者。这些模型无法有效地预测 AIS A+D 患者;当合并这两种患者群体时,这种失败被掩盖了。这表明,以前的预测模型通过结合 AIS 分类和不成比例的高比例 AIS A+D 患者实现了很强的预后准确性。