文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

结合体加热和纳米加热可提高磁流体用于胰腺肿瘤细胞的磁热疗效果。

Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells.

机构信息

Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany.

Department of General, Visceral and Transplant Surgery, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany.

出版信息

Sci Rep. 2018 Sep 4;8(1):13210. doi: 10.1038/s41598-018-31553-9.


DOI:10.1038/s41598-018-31553-9
PMID:30181576
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6123461/
Abstract

Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells.

摘要

全世界都在努力将磁流体热疗(MFH)作为治疗器官局限性肿瘤的方法。然而,由于对决定 MFH 细胞毒性作用的机制缺乏了解,这种治疗方法很难转化为临床应用。在这里,我们研究了不同参数下的细胞内 MFH 疗效,并详细评估了细胞内的细胞毒性作用。为此,我们将人胰腺肿瘤细胞 MiaPaCa-2 和小鼠成纤维细胞 L929 加载氧化铁磁性纳米颗粒(MNP),然后将其分别暴露于 MFH 中 30 分钟或 90 分钟。通过集落形成实验评估由此产生的细胞毒性作用。我们的结果表明,细胞损伤不仅取决于明显的参数——体温和治疗时间,而且还取决于细胞类型和 MFH 治疗过程中每个细胞沉积的热能。通过沉积约 50%的细胞内热能以损害健康细胞来实现肿瘤细胞死亡 95%。这归因于细胞内纳米加热和细胞外体加热的联合作用。在没有明显的体升温的情况下,MFH 治疗可观察到肿瘤细胞损伤高达 86%。在 MNP 被内化到细胞内后,有效加热降低了多达 65%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/cb8ec3000050/41598_2018_31553_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/5e14fc95daaf/41598_2018_31553_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/e96a196438ef/41598_2018_31553_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/5cc3ea5fc2b8/41598_2018_31553_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/4aad6ab63378/41598_2018_31553_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/d075c18bc442/41598_2018_31553_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/cb8ec3000050/41598_2018_31553_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/5e14fc95daaf/41598_2018_31553_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/e96a196438ef/41598_2018_31553_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/5cc3ea5fc2b8/41598_2018_31553_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/4aad6ab63378/41598_2018_31553_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/d075c18bc442/41598_2018_31553_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be3a/6123461/cb8ec3000050/41598_2018_31553_Fig6_HTML.jpg

相似文献

[1]
Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells.

Sci Rep. 2018-9-4

[2]
Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids.

Int J Nanomedicine. 2021

[3]
Cancer hyperthermia using magnetic nanoparticles.

Biotechnol J. 2011-8-26

[4]
Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles.

Int J Nanomedicine. 2011-2-15

[5]
Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid.

PLoS One. 2021-2-5

[6]
A Novel Local Magnetic Fluid Hyperthermia Based on High Gradient Field Guided by Magnetic Particle Imaging.

IEEE Trans Biomed Eng. 2024-8

[7]
MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment.

J Therm Biol. 2016-12

[8]
In vitro Ultrasonic Potentiation of 2-Phenylethynesulfonamide/Magnetic Fluid Hyperthermia Combination Treatments for Ovarian Cancer.

Int J Nanomedicine. 2020-1-21

[9]
Magnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell lines.

Int J Nanomedicine. 2013-12-20

[10]
Deep-tissue localization of magnetic field hyperthermia using pulse sequencing.

Int J Hyperthermia. 2021

引用本文的文献

[1]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[2]
Optical Monitoring of the Magnetization Switching of Single Synthetic-Antiferromagnetic Nanoplatelets with Perpendicular Magnetic Anisotropy.

ACS Photonics. 2023-4-28

[3]
Frequency Mixing Magnetic Detection Setup Employing Permanent Ring Magnets as a Static Offset Field Source.

Sensors (Basel). 2022-11-14

[4]
A Temperature Imaging Method for Multi-Chip High Power LEDs Based on the Magnetic Nanoparticle Thermometer.

Nanomaterials (Basel). 2022-9-21

[5]
Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation.

Nanoscale Adv. 2021-9-28

[6]
Magnetic Nanoparticle-Mediated Heating for Biomedical Applications.

J Heat Transfer. 2022-3

[7]
Iron Oxide Nanoparticle-Based Hyperthermia as a Treatment Option in Various Gastrointestinal Malignancies.

Nanomaterials (Basel). 2021-11-10

[8]
Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One.

Materials (Basel). 2021-10-26

[9]
3D-Printed Replica and Porcine Explants for Pre-Clinical Optimization of Endoscopic Tumor Treatment by Magnetic Targeting.

Cancers (Basel). 2021-11-1

[10]
Computational modeling of thermal combination therapies by magneto-ultrasonic heating to enhance drug delivery to solid tumors.

Sci Rep. 2021-10-1

本文引用的文献

[1]
Nanoscale thermal phenomena in the vicinity of magnetic nanoparticles in alternating magnetic fields.

Adv Funct Mater. 2016-6-14

[2]
Commentary on the clinical and preclinical dosage limits of interstitially administered magnetic fluids for therapeutic hyperthermia based on current practice and efficacy models.

Int J Hyperthermia. 2017-10-18

[3]
Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment.

Int J Nanomedicine. 2017-8-18

[4]
Magnetic particles with perpendicular anisotropy for mechanical cancer cell destruction.

Sci Rep. 2017-6-26

[5]
Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells.

Phys Med Biol. 2016-6-7

[6]
Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia.

Nanomedicine (Lond). 2015-12-11

[7]
Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model.

Int J Pharm. 2016-1-30

[8]
Amifostine-conjugated pH-sensitive calcium phosphate-covered magnetic-amphiphilic gelatin nanoparticles for controlled intracellular dual drug release for dual-targeting in HER-2-overexpressing breast cancer.

J Control Release. 2015-10-23

[9]
Physical Principles of Nanoparticle Cellular Endocytosis.

ACS Nano. 2015-9-22

[10]
Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery.

Int J Mol Sci. 2015-4-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索