Suppr超能文献

用于生物医学应用的磁性纳米粒子介导加热

Magnetic Nanoparticle-Mediated Heating for Biomedical Applications.

作者信息

Kwizera Elyahb Allie, Stewart Samantha, Mahmud Md Musavvir, He Xiaoming

机构信息

Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.

Fischell Department of Bioengineering, University of- Maryland, College Park, MD 20742, USA.

出版信息

J Heat Transfer. 2022 Mar;144(3). doi: 10.1115/1.4053007. Epub 2022 Jan 18.

Abstract

Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.

摘要

磁性纳米颗粒,尤其是超顺磁性纳米颗粒(SPIONs),在各种生物医学应用中引起了极大关注。SPIONs的简便合成与功能化,以及对其尺寸和形状的轻松控制以定制其独特性能,使得开发针对不同功能/应用的不同类型SPIONs成为可能。最近,人们对SPIONs在治疗癌症等疾病以及对冷冻保存/储存的细胞、组织和器官进行纳米加热方面的热效应给予了相当大的关注。在本综述中,讨论了SPIONs在磁热疗法以及增强细胞、组织和器官冷冻保存方面磁热效应的最新进展,以及SPIONs在癌症治疗中的非磁热效应(即高强度聚焦超声或HIFU激活加热)。此外,还介绍了在这些生物医学应用中使用磁性纳米颗粒所面临的挑战。

相似文献

1
Magnetic Nanoparticle-Mediated Heating for Biomedical Applications.
J Heat Transfer. 2022 Mar;144(3). doi: 10.1115/1.4053007. Epub 2022 Jan 18.
2
Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated .
ACS Nano. 2022 Oct 25;16(10):16699-16712. doi: 10.1021/acsnano.2c06239. Epub 2022 Oct 6.
5
Polymeric Reactor for the Synthesis of Superparamagnetic-Thermal Treatment of Breast Cancer.
Mol Pharm. 2019 Aug 5;16(8):3577-3587. doi: 10.1021/acs.molpharmaceut.9b00433. Epub 2019 Jul 24.
7
Could FA-PG-SPIONs act as a hyperthermia sensitizing agent? An in vitro study.
J Therm Biol. 2018 Dec;78:73-83. doi: 10.1016/j.jtherbio.2018.09.010. Epub 2018 Sep 14.
8
Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications.
IEEE Trans Nanobioscience. 2008 Dec;7(4):298-305. doi: 10.1109/TNB.2008.2011864.
9
PEG Coated FeO/RGO Nano-Cube-Like Structures for Cancer Therapy via Magnetic Hyperthermia.
Nanomaterials (Basel). 2021 Sep 15;11(9):2398. doi: 10.3390/nano11092398.
10
Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics.
Int J Pharm. 2015 Dec 30;496(2):191-218. doi: 10.1016/j.ijpharm.2015.10.058. Epub 2015 Oct 28.

引用本文的文献

1
Magnetic-vortex nanodonuts enhance ferroptosis effect of tumor ablation through an imaging-guided hyperthermia/radiosensitization strategy.
iScience. 2024 Jul 18;27(10):110533. doi: 10.1016/j.isci.2024.110533. eCollection 2024 Oct 18.
2
Magnetic Modulation of Biochemical Synthesis in Synthetic Cells.
J Am Chem Soc. 2024 May 15;146(19):13176-13182. doi: 10.1021/jacs.4c00845. Epub 2024 May 1.
5
Hydrogel Magnetomechanical Actuator Nanoparticles for Wireless Remote Control of Mechanosignaling .
Nano Lett. 2023 Jun 14;23(11):5227-5235. doi: 10.1021/acs.nanolett.3c01207. Epub 2023 May 16.
6
Nanomedicines for high‑intensity focused ultrasound cancer treatment and theranostics (Review).
Exp Ther Med. 2023 Mar 3;25(4):170. doi: 10.3892/etm.2023.11869. eCollection 2023 Apr.
7
Finite Element Models of Gold Nanoparticles and Their Suspensions for Photothermal Effect Calculation.
Bioengineering (Basel). 2023 Feb 9;10(2):232. doi: 10.3390/bioengineering10020232.
8
Nano drugs delivery system: A novel promise for the treatment of atrial fibrillation.
Front Cardiovasc Med. 2022 Oct 26;9:906350. doi: 10.3389/fcvm.2022.906350. eCollection 2022.

本文引用的文献

2
Advanced technologies for the preservation of mammalian biospecimens.
Nat Biomed Eng. 2021 Aug;5(8):793-804. doi: 10.1038/s41551-021-00784-z. Epub 2021 Aug 23.
3
Selective Magnetic Nanoheating: Combining Iron Oxide Nanoparticles for Multi-Hot-Spot Induction and Sequential Regulation.
Nano Lett. 2021 Sep 8;21(17):7213-7220. doi: 10.1021/acs.nanolett.1c02178. Epub 2021 Aug 19.
4
Vitrification and Nanowarming of Kidneys.
Adv Sci (Weinh). 2021 Oct;8(19):e2101691. doi: 10.1002/advs.202101691. Epub 2021 Aug 11.
5
Conduction Cooling and Plasmonic Heating Dramatically Increase Droplet Vitrification Volumes for Cell Cryopreservation.
Adv Sci (Weinh). 2021 Apr 10;8(11):2004605. doi: 10.1002/advs.202004605. eCollection 2021 Jun.
6
Microbubble-Enhanced Heating: Exploring the Effect of Microbubble Concentration and Pressure Amplitude on High-Intensity Focused Ultrasound Treatments.
Ultrasound Med Biol. 2021 Aug;47(8):2296-2309. doi: 10.1016/j.ultrasmedbio.2021.03.035. Epub 2021 May 11.
9
Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges.
Adv Sci (Weinh). 2021 Feb 1;8(6):2002425. doi: 10.1002/advs.202002425. eCollection 2021 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验