Science & Technology Innovation Institute, Dongguan University of Technology, Dongguan, China.
Phys Chem Chem Phys. 2018 Sep 19;20(36):23528-23534. doi: 10.1039/c8cp04160a.
Oxygen tolerance capacity is critical for hydrogen oxidation/evolution catalysts. In nature, [NiFe] hydrogenases show excellent O2-tolerance and can rapidly reactivate the active site. This work aims to understand the reduction of O2 on the active site of [NiFe] hydrogenases. From the density functional theory (DFT) calculations, the free energy diagram for the oxygen reduction reaction (ORR) has been derived and the rate-determining step is found to be the Ni-B to Ni-SIb' step. Our calculation explains the slow reactivation for the Ni-A state compared to the Ni-B state, which is due to the particularly stable structure of the Ni-A state.
氧气耐受能力对于氢氧化/还原催化剂至关重要。在自然界中,[NiFe]氢化酶表现出优异的耐氧能力,并能迅速使活性位点重新活化。这项工作旨在了解[NiFe]氢化酶活性位点上氧气的还原。通过密度泛函理论(DFT)计算,得出了氧还原反应(ORR)的自由能图,发现速率决定步骤是 Ni-B 到 Ni-SIb' 步骤。我们的计算解释了与 Ni-B 状态相比,Ni-A 状态的缓慢再活化,这是由于 Ni-A 状态的结构特别稳定。