University Medical Center Göttingen &, German Center for Neurodegenerative Diseases (DZNE) &, MPI for Biophysical Chemistry, Von-Siebold-Strasse 3a, 37075, Göttingen, Germany.
Magnetic Resonance Center (CERM) &, Department of Chemistry "Ugo Schiff", University of Florence, via Sacconi 6, 50121, Sesto Fiorentino, Italy.
Angew Chem Int Ed Engl. 2018 Nov 12;57(46):15262-15266. doi: 10.1002/anie.201808172. Epub 2018 Oct 18.
Intrinsically disordered proteins (IDPs) experience a diverse spectrum of motions that are difficult to characterize with a single experimental technique. Herein we combine high- and low-field nuclear spin relaxation, nanosecond fluorescence correlation spectroscopy (nsFCS), and long molecular dynamics simulations of alpha-synuclein, an IDP involved in Parkinson disease, to obtain a comprehensive picture of its conformational dynamics. The combined analysis shows that fast motions below 2 ns caused by local dihedral angle fluctuations and conformational sampling within and between Ramachandran substates decorrelate most of the backbone N-H orientational memory. However, slow motions with correlation times of up to ca. 13 ns from segmental dynamics are present throughout the alpha-synuclein chain, in particular in its C-terminal domain, and global chain reconfiguration occurs on a timescale of ca. 60 ns. Our study demonstrates a powerful strategy to determine residue-specific protein dynamics in IDPs at different time and length scales.
无规卷曲蛋白质(IDPs)经历着多样化的运动,这使得单一实验技术难以对其进行全面的描述。在此,我们结合高场和低场核自旋弛豫、纳秒荧光相关光谱(nsFCS),以及与帕金森病相关的 IDPα-突触核蛋白的长分子动力学模拟,以获得其构象动力学的综合图像。联合分析表明,由局部二面角波动引起的 2ns 以下的快速运动和 Ramachandran 亚基内和之间的构象采样,会使大部分的骨架 N-H 方位记忆去相关。然而,在整个α-突触核蛋白链中,尤其是在其 C 末端结构域中,存在着长达 13ns 的相关时间的慢运动,而整个链的重新配置则发生在大约 60ns 的时间尺度上。我们的研究展示了一种强大的策略,可以在不同的时间和长度尺度上确定 IDPs 中残基特异性的蛋白质动力学。