Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States.
Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States.
J Chem Theory Comput. 2022 Oct 11;18(10):6310-6323. doi: 10.1021/acs.jctc.2c00328. Epub 2022 Sep 9.
For intrinsically disordered proteins (IDPs), a pressing question is how sequence codes for function. Dynamics serves as a crucial link, reminiscent of the role of structure in sequence-function relations of structured proteins. To define general rules governing sequence-dependent backbone dynamics, we carried out long molecular dynamics simulations of eight IDPs. Blocks of residues exhibiting large amplitudes in slow dynamics are rigidified by local inter-residue interactions or secondary structures. A long region or an entire IDP can be slowed down by long-range contacts or secondary-structure packing. On the other hand, glycines promote fast dynamics and either demarcate rigid blocks or facilitate multiple modes of local and long-range inter-residue interactions. The sequence-dependent backbone dynamics endows IDPs with versatile response to binding partners, with some blocks recalcitrant while others readily adapting to intermolecular interactions.
对于无序蛋白质(IDPs),一个紧迫的问题是序列如何编码功能。动力学起着至关重要的作用,让人想起结构在结构蛋白序列-功能关系中的作用。为了定义控制序列依赖性骨架动力学的一般规则,我们对 8 种 IDPs 进行了长分子动力学模拟。在慢动力学中具有大振幅的残基块通过局部残基间相互作用或二级结构固定化。长区域或整个 IDP 可以通过长程接触或二级结构包装而减慢速度。另一方面,甘氨酸促进快速动力学,既能划分刚性块,又能促进局部和长程残基间相互作用的多种模式。序列依赖性骨架动力学赋予 IDPs 对结合伴侣的多种响应方式,一些块难以适应,而另一些则容易适应分子间相互作用。