Suppr超能文献

罕见变异关联测试的一般回顾性荟萃分析框架。

General retrospective mega-analysis framework for rare variant association tests.

作者信息

Chien Li-Chu, Chiu Yen-Feng

机构信息

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.

Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan, ROC.

出版信息

Genet Epidemiol. 2018 Oct;42(7):621-635. doi: 10.1002/gepi.22147. Epub 2018 Sep 6.

Abstract

Here, we describe a retrospective mega-analysis framework for gene- or region-based multimarker rare variant association tests. Our proposed mega-analysis association tests allow investigators to combine longitudinal and cross-sectional family- and/or population-based studies. This framework can be applied to a continuous, categorical, or survival trait. In addition to autosomal variants, the tests can be applied to conduct mega-analyses on X-chromosome variants. Tests were built on study-specific region- or gene-level quasiscore statistics and, therefore, do not require estimates of effects of individual rare variants. We used the generalized estimating equation approach to account for complex multiple correlation structures between family members, repeated measurements, and genetic markers. While accounting for multilevel correlations and heterogeneity across studies, the test statistics were computationally efficient and feasible for large-scale sequencing studies. The retrospective aspect of association tests helps alleviate bias due to phenotype-related sampling and type I errors due to misspecification of phenotypic distribution. We evaluated our developed mega-analysis methods through comprehensive simulations with varying sample sizes, covariates, population stratification structures, and study designs across multiple studies. To illustrate application of the proposed framework, we conducted a mega-association analysis combining a longitudinal family study and a cross-sectional case-control study from Genetic Analysis Workshop 19.

摘要

在此,我们描述了一种用于基于基因或区域的多标记罕见变异关联测试的回顾性大型分析框架。我们提出的大型分析关联测试允许研究人员将纵向和横断面的基于家庭和/或人群的研究结合起来。该框架可应用于连续、分类或生存性状。除了常染色体变异外,这些测试还可用于对X染色体变异进行大型分析。测试基于特定研究的区域或基因水平的拟评分统计量构建,因此不需要估计单个罕见变异的效应。我们使用广义估计方程方法来考虑家庭成员之间、重复测量以及遗传标记之间复杂的多重相关结构。在考虑跨研究的多层次相关性和异质性的同时,测试统计量对于大规模测序研究在计算上是高效且可行的。关联测试的回顾性有助于减轻由于与表型相关的抽样导致的偏差以及由于表型分布错误指定导致的I型错误。我们通过在多个研究中进行的具有不同样本量、协变量、人群分层结构和研究设计的综合模拟,评估了我们开发的大型分析方法。为了说明所提出框架的应用,我们结合了遗传分析研讨会19的一项纵向家庭研究和一项横断面病例对照研究进行了大型关联分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验