Suppr超能文献

基于家系测序研究的罕见变异关联测试。

Rare variant association test in family-based sequencing studies.

出版信息

Brief Bioinform. 2017 Nov 1;18(6):954-961. doi: 10.1093/bib/bbw083.

Abstract

The objective of this article is to introduce valid and robust methods for the analysis of rare variants for family-based exome chips, whole-exome sequencing or whole-genome sequencing data. Family-based designs provide unique opportunities to detect genetic variants that complement studies of unrelated individuals. Currently, limited methods and software tools have been developed to assist family-based association studies with rare variants, especially for analyzing binary traits. In this article, we address this gap by extending existing burden and kernel-based gene set association tests for population data to related samples, with a particular emphasis on binary phenotypes. The proposed approach blends the strengths of kernel machine methods and generalized estimating equations. Importantly, the efficient generalized kernel score test can be applied as a mega-analysis framework to combine studies with different designs. We illustrate the application of the proposed method using data from an exome sequencing study of autism. Methods discussed in this article are implemented in an R package 'gskat', which is available on CRAN and GitHub.

摘要

本文的目的是介绍有效的、稳健的方法,用于分析基于家系的外显子芯片、全外显子测序或全基因组测序数据中的罕见变异。基于家系的设计为检测补充了无关个体研究的遗传变异提供了独特的机会。目前,已经开发了有限的方法和软件工具来协助基于家系的罕见变异关联研究,特别是用于分析二分类性状。在本文中,我们通过将现有的基于核的基因集关联测试方法从群体数据扩展到相关样本,特别是针对二分类表型,来解决这一差距。所提出的方法融合了核机器方法和广义估计方程的优势。重要的是,高效的广义核得分检验可以作为一个大型分析框架,将具有不同设计的研究结合起来。我们使用自闭症外显子测序研究的数据说明了所提出方法的应用。本文讨论的方法在一个名为“gskat”的 R 包中实现,该包可在 CRAN 和 GitHub 上获得。

相似文献

5

引用本文的文献

5
A review of kernel methods for genetic association studies.遗传关联研究的核方法综述。
Genet Epidemiol. 2019 Mar;43(2):122-136. doi: 10.1002/gepi.22180. Epub 2019 Jan 2.

本文引用的文献

1
A New Method for Detecting Associations with Rare Copy-Number Variants.一种检测与罕见拷贝数变异关联的新方法。
PLoS Genet. 2015 Oct 2;11(10):e1005403. doi: 10.1371/journal.pgen.1005403. eCollection 2015 Oct.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验