Suppr超能文献

解析铜绿假单胞菌中β-内酰胺酶非依赖性β-内酰胺耐药演变轨迹。

Deciphering β-lactamase-independent β-lactam resistance evolution trajectories in Pseudomonas aeruginosa.

机构信息

Servicio de Microbiología and Unidad de Investigación, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain.

出版信息

J Antimicrob Chemother. 2018 Dec 1;73(12):3322-3331. doi: 10.1093/jac/dky364.

Abstract

BACKGROUND

While resistance related to the expression of β-lactamases, such as AmpC from Pseudomonas aeruginosa, has been deeply studied, this work addresses the gap in the knowledge of other potential bacterial strategies to overcome the activity of β-lactams when β-lactamases are not expressed.

METHODS

We analysed β-lactam resistance evolution trajectories in a WT strain and in isogenic mutants either lacking AmpC (AmpC mutant) or unable to express it (AmpG mutant), exposed to increasing concentrations of ceftazidime for 7 days in quintuplicate experiments. Characterization of evolved lineages included susceptibility profiles, whole-genome sequences, resistance mechanisms, fitness (competitive growth assays) and virulence (Caenorhabditis elegans model).

RESULTS

Development of resistance was faster for the WT strain but, after 7 days, all strains reached clinical ceftazidime resistance levels. The main resistance mechanism in the WT strain was ampC overexpression, due to mutations in dacB and ampD or mpl. In contrast, ampC overexpression did not evolve in any of the AmpG lineages. Moreover, sequencing of the ΔAmpC and ΔAmpG evolved lineages revealed alternative resistance mutations (not seen in WT lineages) that included, in all cases, large (50-600 kb) deletions of specific chromosomal regions together with mutations leading to β-lactam target [ftsI (PBP3)] modification and/or the overexpression or structural modification of the efflux pump MexAB-OprM. Finally, evolved lineages from the AmpC and, especially, AmpG mutants showed a reduced fitness and virulence.

CONCLUSIONS

In addition to providing new insights into β-lactam resistance mechanisms and evolution, our findings should be helpful for guiding future strategies to combat P. aeruginosa infections.

摘要

背景

虽然已经深入研究了与β-内酰胺酶表达相关的耐药性,例如铜绿假单胞菌中的 AmpC,但这项工作解决了在β-内酰胺酶不表达时其他潜在细菌克服β-内酰胺类药物活性的策略的知识空白。

方法

我们分析了在 WT 菌株和同源突变体(分别缺乏 AmpC(AmpC 突变体)或无法表达 AmpC(AmpG 突变体))中,在 7 天的 5 倍重复实验中,在不断增加的头孢他啶浓度下β-内酰胺耐药性进化轨迹。进化谱系的特征包括药敏谱、全基因组序列、耐药机制、适应性(竞争生长测定)和毒力(秀丽隐杆线虫模型)。

结果

WT 菌株的耐药性发展更快,但 7 天后,所有菌株均达到临床头孢他啶耐药水平。WT 菌株的主要耐药机制是 AmpC 过度表达,这是由于 dacB 和 ampD 或 mpl 中的突变引起的。相比之下,在任何 AmpG 谱系中都没有进化出 AmpC 过度表达。此外,对 ΔAmpC 和 ΔAmpG 进化谱系的测序揭示了替代的耐药突变(在 WT 谱系中未观察到),包括在所有情况下,特定染色体区域的 50-600 kb 大片段缺失,以及导致β-内酰胺靶标 [ftsI(PBP3)] 修饰和/或外排泵 MexAB-OprM 过度表达或结构修饰的突变。最后,AmpC 和尤其是 AmpG 突变体的进化谱系显示出适应性和毒力降低。

结论

除了为β-内酰胺类药物耐药性机制和进化提供新的见解外,我们的研究结果还应有助于指导未来对抗铜绿假单胞菌感染的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验