Suppr超能文献

神经形态突触电子学的最新进展:从新兴材料、器件到神经网络

Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.

作者信息

Zhao Yuhang, Jiang Jie

机构信息

Human Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China.

出版信息

J Nanosci Nanotechnol. 2018 Dec 1;18(12):8003-8015. doi: 10.1166/jnn.2018.16428.

Abstract

To realize intelligent functions in electronic devices like a human brain, it is important to develop the electronic devices that can imitate biological neurons and synapses (synaptic electronics). In this paper, we review the critical learning mechanisms for synaptic plasticity. Different electronic devices were developed to mimic biological synapses, such as atomic switch, phase change memory, ferroelectric memory, and electric-double-layer transistors. More importantly, several groups have realized the artificial neuromorphic network using multi-gate transistor architecture. The leap from synapse to neuron to neural network, thus, has been systematically realized using thin films and nanomaterials. The emerging synaptic electronics can have a broader applications and brighter future in the next-generation intelligent nano-electronics.

摘要

为了在类似人类大脑的电子设备中实现智能功能,开发能够模仿生物神经元和突触的电子设备(突触电子学)非常重要。在本文中,我们回顾了突触可塑性的关键学习机制。人们开发了不同的电子设备来模拟生物突触,如原子开关、相变存储器、铁电存储器和双电层晶体管。更重要的是,几个研究小组已经使用多栅晶体管架构实现了人工神经形态网络。因此,利用薄膜和纳米材料已经系统地实现了从突触到神经元再到神经网络的跨越。新兴的突触电子学在下一代智能纳米电子学中具有更广泛的应用和更光明的未来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验