Suppr超能文献

利用 5′-末端含有 3-氰基乙烯基咔唑核苷酸的 5′-磷酸取代寡脱氧核苷酸探针实现光化学胞嘧啶脱氨的超加速。

Ultra-acceleration of Photochemical Cytosine Deamination by Using a 5'-Phosphate-Substituted Oligodeoxyribonucleotide Probe Containing a 3-Cyanovinylcarbazole Nucleotide at Its 5'-End.

机构信息

Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan.

出版信息

Chembiochem. 2018 Nov 2;19(21):2257-2261. doi: 10.1002/cbic.201800384. Epub 2018 Oct 15.

Abstract

Genes are the blueprints for the architectures of living organisms, providing the backbone of the information required for formation of proteins. Changes in genes lead to disorders, and these disorders could be rectified by reversing the mutations that caused them. Photochemical methods currently in use for site-directed mutagenesis employ the photoactive 3-cyanovinylcarbazole ( K) nucleotide incorporated in the oligodeoxyribonucleotide (ODN) backbone. The major drawback of this method, the requirement for high temperature, has been addressed, and deamination has previously been achieved at 37 °C but with low efficiency. Here, efficient deamination has been accomplished under physiological conditions by using a short complementary photoactive ODN with a 5'-phosphate group in the -1 position with respect to the target cytosine. It is hypothesized that the free phosphate group affects the microenvironment around the target cytosine by activating the incoming nucleophile through hydrogen bonding with the water molecule, thus facilitating nucleophilic attack on the cytosine C-4 carbon. The degree of deamination observed in this technique is high and the effect of the phosphate group is to accelerate the deamination reaction.

摘要

基因是生物体结构的蓝图,为蛋白质形成提供了所需信息的骨干。基因的变化会导致疾病,而这些疾病可以通过逆转导致它们的突变来纠正。目前用于定点诱变的光化学方法采用在寡脱氧核苷酸(ODN)主链中掺入的光活性 3-氰基乙烯基咔唑(K)核苷酸。该方法的主要缺点是需要高温,已经解决了这个问题,并且以前已经在 37°C 下实现了脱氨作用,但效率较低。在这里,通过使用在靶嘧啶碱基的-1 位带有 5'-磷酸基团的短互补光活性 ODN,在生理条件下实现了有效的脱氨作用。据推测,通过与水分子形成氢键来激活进入的亲核试剂,磷酸基团会影响靶嘧啶碱基周围的微环境,从而促进亲核试剂对胞嘧啶 C-4 碳的攻击。在这项技术中观察到的脱氨程度很高,磷酸基团的作用是加速脱氨反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验