Suppr超能文献

使用卷积神经网络从CT图像中进行心脏腔室分割

Heart Chamber Segmentation from CT Using Convolutional Neural Networks.

作者信息

Dormer James D, Ma Ling, Halicek Martin, Reilly Carolyn M, Schreibmann Eduard, Fei Baowei

机构信息

Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA.

Medical College of Georgia, Augusta, GA.

出版信息

Proc SPIE Int Soc Opt Eng. 2018 Feb;10578. doi: 10.1117/12.2293554. Epub 2018 Mar 12.

Abstract

CT is routinely used for radiotherapy planning with organs and regions of interest being segmented for diagnostic evaluation and parameter optimization. For cardiac segmentation, many methods have been proposed for left ventricular segmentation, but few for simultaneous segmentation of the entire heart. In this work, we present a convolutional neural networks (CNN)-based cardiac chamber segmentation method for 3D CT with 5 classes: left ventricle, right ventricle, left atrium, right atrium, and background. We achieved an overall accuracy of 87.2% ± 3.3% and an overall chamber accuracy of 85.6 ± 6.1%. The deep learning based segmentation method may provide an automatic tool for cardiac segmentation on CT images.

摘要

CT通常用于放射治疗计划,对感兴趣的器官和区域进行分割以进行诊断评估和参数优化。对于心脏分割,已经提出了许多用于左心室分割的方法,但同时分割整个心脏的方法却很少。在这项工作中,我们提出了一种基于卷积神经网络(CNN)的用于3D CT的心脏腔室分割方法,该方法可分为5类:左心室、右心室、左心房、右心房和背景。我们实现了87.2%±3.3%的总体准确率和85.6±6.1%的总体腔室准确率。基于深度学习的分割方法可能为CT图像上的心脏分割提供一种自动工具。

相似文献

3

引用本文的文献

2
Role of Deep Learning in Computed Tomography.深度学习在计算机断层扫描中的作用。
Cureus. 2023 May 17;15(5):e39160. doi: 10.7759/cureus.39160. eCollection 2023 May.

本文引用的文献

6
Automatic model-based segmentation of the heart in CT images.CT图像中心脏的基于模型的自动分割
IEEE Trans Med Imaging. 2008 Sep;27(9):1189-201. doi: 10.1109/TMI.2008.918330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验