Suppr超能文献

金在甲烷催化还原制乙烷和分子氢方面如何优于铂。

How Au Outperforms Pt in the Catalytic Reduction of Methane towards Ethane and Molecular Hydrogen.

作者信息

Martínez José I, Calle-Vallejo Federico, de Andrés Pedro L

机构信息

Materials Science Factory, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain, Tel.: +34 913349000 ext. 131366.

Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.

出版信息

Top Catal. 2018 Aug 1;61(12-13):1290-1299. doi: 10.1007/s11244-018-0992-4. Epub 2018 May 15.

Abstract

Within the context of a "hydrogen economy", it is paramount to guarantee a stable supply of molecular hydrogen to devices such as fuel cells. At the same time, catalytic conversion of the environmentally harmful methane into ethane, with a significantly lower Global Warming Potential, turns into a highly desirable challenge. Herein we propose a first-step novel proof-of-concept mechanism to accomplish both tasks simultaneously. For that purpose we provide transition-state barriers and reaction Helmholtz free energies obtained from first-principles Density Functional Theory by taking account vibrations for 2CH(g) → CH(g) + H(g) to show that molecular hydrogen can be produced by subnanometer Pt and Au nanoparticles from natural gas. Interestingly, the active sites for the reaction are located on different planes on the two nanoparticles, effectively differentiating the working principle of the two metals. The analysis shows that the cycle to reduce CH can be performed on Au and Pt with similar efficiencies, but Au requires only half the working temperature of Pt. This substantial decrease of temperature can be traced back to several intermediate steps, but most crucially to the final one where the catalyst must be cleaned from H(⋆) to be able to restart the catalytic cycle. This simple study case provides useful guidelines to capitalize on finite-size effects in small nanoparticles for the design of new and more efficient catalysts. Interestingly, present results obtained for the intermediate steps of the catalytic cycle show an excellent agreement with previous experimental evidence. Finally, we stress the importance of including the final cleaning steps to start a new fresh catalytic cycle.

摘要

在“氢经济”的背景下,确保向燃料电池等设备稳定供应分子氢至关重要。与此同时,将对环境有害的甲烷催化转化为全球变暖潜能值显著更低的乙烷,成为一项极具吸引力的挑战。在此,我们提出一种新颖的第一步概念验证机制,以同时完成这两项任务。为此,我们通过考虑2CH(g) → CH(g) + H(g)的振动,提供了从第一性原理密度泛函理论获得的过渡态能垒和反应亥姆霍兹自由能,以表明分子氢可由亚纳米级的铂和金纳米颗粒从天然气中产生。有趣的是,该反应的活性位点位于两种纳米颗粒的不同平面上,有效地区分了两种金属的工作原理。分析表明,还原CH的循环可以在金和铂上以相似的效率进行,但金所需的工作温度仅为铂的一半。温度的大幅降低可追溯到几个中间步骤,但最关键的是最后一步,在这一步中催化剂必须从H(⋆)中清除,以便能够重新开始催化循环。这个简单的研究案例为利用小纳米颗粒中的有限尺寸效应来设计新型高效催化剂提供了有用的指导方针。有趣的是,催化循环中间步骤的当前结果与先前的实验证据显示出极好的一致性。最后,我们强调纳入最终清洁步骤以开始新的催化循环的重要性。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验