Hossain I, Jiang J, Matras M, Trociewitz U P, Lu J, Kametani F, Larbalestier D, Hellstrom E
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, FL 32310, USA.
Materials Science and Engineering, Florida State University, Tallahassee, Florida, FL 32310, USA.
IOP Conf Ser Mater Sci Eng. 2017;279. doi: 10.1088/1757-899X/279/1/012021. Epub 2017 Dec 30.
In order to develop a high current density in coils, Bi-2212 wires must be electrically discrete in tight winding packs. It is vital to use an insulating layer that is thin, fulfils the dielectric requirements, and can survive the heat treatment whose maximum temperature reaches 890 °C. A thin (20-30 µm) ceramic coating could be better as the insulating layer compared to alumino-silicate braided fiber insulation, which is about 100 μm thick and reacts with the Ag sheath during heat treatment, degrading the critical current density (J). At present, TiO seems to be the most viable ceramic material for such a thin insulation because it is chemically compatible with Ag and Bi-2212 and its sintering temperature is lower than the maximum temperature used for the Bi-2212 heat treatment. However, recent tests of a large Bi-2212 coil insulated only with TiO showed severe electrical shorting between the wires after over pressure heat treatment (OPHT). The origin of the shorting was frequent silver extrusions that penetrated the porous TiO layer and electrically connected adjacent Bi-2212 wires. To understand the mechanism of this unexpected behaviour, we investigated the effect of sheath material and hydrostatic pressure on the formation of Ag extrusions. We found that Ag extrusions occur only when TiO-insulated Ag-0.2%Mg sheathed wire (Ag(Mg) wire) undergoes OPHT at 50 bar. No Ag extrusions were observed when the TiO-insulated Ag(Mg) wire was processed at 1 bar. The TiO-insulated wires sheathed with pure Ag that underwent 50 bar OPHT were also free from Ag extrusions. A key finding is that the Ag extrusions emanating from the Ag(Mg) sheath actually contain no MgO, suggesting that local depletion of MgO facilitates local, heterogeneous deformation of the sheath under hydrostatic overpressure. Our study also suggests that predensifying the Ag(Mg) wire before insulating it with TiO and doing the final OPHT can potentially prevent Ag extrusion.
为了在线圈中产生高电流密度,Bi-2212 导线必须在紧密缠绕组中实现电气离散。使用薄的绝缘层至关重要,该绝缘层要满足介电要求,并且能够承受最高温度达 890 °C 的热处理。与约 100 μm 厚且在热处理过程中会与银护套发生反应从而降低临界电流密度 (J) 的铝硅酸盐编织纤维绝缘相比,薄的(20 - 30 µm)陶瓷涂层作为绝缘层可能更好。目前,TiO 似乎是用于这种薄绝缘的最可行陶瓷材料,因为它与 Ag 和 Bi-2212 化学相容,且其烧结温度低于 Bi-2212 热处理所用的最高温度。然而,最近对仅用 TiO 绝缘的大型 Bi-2212 线圈进行的测试表明,在过压热处理(OPHT)后,导线之间出现了严重的电气短路。短路的原因是频繁的银挤出物穿透了多孔 TiO 层并使相邻的 Bi-2212 导线电气连接。为了解这种意外行为的机制,我们研究了护套材料和静水压力对银挤出物形成的影响。我们发现,只有当用 TiO 绝缘的 Ag - 0.2%Mg 护套线(Ag(Mg) 线)在 50 bar 下进行 OPHT 时才会出现银挤出物。当用 TiO 绝缘的 Ag(Mg) 线在 1 bar 下加工时,未观察到银挤出物。经过 50 bar OPHT 的纯银护套的 TiO 绝缘线也没有银挤出物。一个关键发现是,从 Ag(Mg) 护套中挤出的银实际上不含 MgO,这表明 MgO 的局部耗尽促进了护套在静水过压下的局部非均匀变形。我们的研究还表明,在用 TiO 绝缘并进行最终 OPHT 之前对 Ag(Mg) 线进行预致密化处理可能会防止银挤出。