Suppr超能文献

Effects of lithium on phosphoinositide metabolism in vivo.

作者信息

Sherman W R, Gish B G, Honchar M P, Munsell L Y

出版信息

Fed Proc. 1986 Oct;45(11):2639-46.

PMID:3019784
Abstract

All of the known pathways for metabolizing the phospholipase C (EC 3.1.4.10) products of phosphoinositide metabolism eventually lead to myo-inositol monophosphates and products that are hydrolyzed by myo-inositol 1-phosphatase (EC 3.1.3.25). That enzyme is inhibited by lithium (Ki about 1 mM). In animals treated with LiCl, elevations of myo-inositol 1-phosphate (1-IP) occur in brain that appear to result from endogenous neural activity for they are diminished by the anesthetics halothane and pentobarbital. Lithium is thus a useful tool for assessing endogenous in vivo cerebral phosphoinositide metabolism. The 1-IP elevation is also useful for revealing in vivo central nervous system (CNS) receptor activity that is stimulated by endogenous or exogenous processes such as the effects of centrally acting drugs and of seizures. Stimulation of the CNS in the presence of lithium causes myo-inositol to be sequestered in 1-IP in proportion to the amount of stimulation. Thus if the inositol level falls sufficiently resynthesis of the phosphoinositides may be compromised and receptor response to stimuli may be reduced. Evidence for such an occurrence would support the theory that this is one mechanism by which lithium acts in the therapy of manic illness. We extended our efforts to identify such a lowering of phosphoinositide levels to mice where cerebral metabolism can be halted more rapidly than in rats. However, the only change detected was a small elevation in phosphatidylinositol 4-phosphate. We were successful, however, in causing all of the phosphoinositides to be reduced in rat cerebral cortex by pilocarpine stimulation after lithium treatment, a procedure that causes seizures. The same procedure causes the largest reduction in cortical myo-inositol levels that we have observed, and thus may represent the point where the inositol decrement is sufficient to interfere with resynthesis of the lipids.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验