Suppr超能文献

用于发现神经退行性痴呆生物流体生物标志物的蛋白质组学方法

Proteomic Approaches for the Discovery of Biofluid Biomarkers of Neurodegenerative Dementias.

作者信息

Carlyle Becky C, Trombetta Bianca A, Arnold Steven E

机构信息

Massachusetts General Hospital Department of Neurology, Charlestown, MA 02129, USA.

出版信息

Proteomes. 2018 Aug 31;6(3):32. doi: 10.3390/proteomes6030032.

Abstract

Neurodegenerative dementias are highly complex disorders driven by vicious cycles of intersecting pathophysiologies. While most can be definitively diagnosed by the presence of disease-specific pathology in the brain at postmortem examination, clinical disease presentations often involve substantially overlapping cognitive, behavioral, and functional impairment profiles that hamper accurate diagnosis of the specific disease. As global demographics shift towards an aging population in developed countries, clinicians need more sensitive and specific diagnostic tools to appropriately diagnose, monitor, and treat neurodegenerative conditions. This review is intended as an overview of how modern proteomic techniques (liquid chromatography mass spectrometry (LC-MS/MS) and advanced capture-based technologies) may contribute to the discovery and establishment of better biofluid biomarkers for neurodegenerative disease, and the limitations of these techniques. The review highlights some of the more interesting technical innovations and common themes in the field but is not intended to be an exhaustive systematic review of studies to date. Finally, we discuss clear reporting principles that should be integrated into all studies going forward to ensure data is presented in sufficient detail to allow meaningful comparisons across studies.

摘要

神经退行性痴呆是由相互交叉的病理生理学恶性循环驱动的高度复杂疾病。虽然大多数疾病在死后尸检时可通过大脑中疾病特异性病理的存在来明确诊断,但临床疾病表现往往涉及大量重叠的认知、行为和功能损害特征,这妨碍了对特定疾病的准确诊断。随着发达国家全球人口结构向老龄化转变,临床医生需要更敏感、特异的诊断工具来适当地诊断、监测和治疗神经退行性疾病。本综述旨在概述现代蛋白质组学技术(液相色谱质谱联用技术(LC-MS/MS)和先进的基于捕获的技术)如何有助于发现和建立更好的神经退行性疾病生物流体生物标志物,以及这些技术的局限性。该综述突出了该领域一些更有趣的技术创新和共同主题,但并非旨在对迄今为止的研究进行详尽的系统综述。最后,我们讨论了明确的报告原则,这些原则应纳入所有未来的研究中,以确保数据以足够详细的方式呈现,以便进行有意义的跨研究比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859b/6161166/426d0b55ae14/proteomes-06-00032-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验