State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China.
Guangzhou Institute of Geography, Guangzhou 510070, China.
Sensors (Basel). 2018 Aug 31;18(9):2873. doi: 10.3390/s18092873.
This study explores the performance of Sentinel-2A Multispectral Instrument (MSI) imagery for extracting urban impervious surface using a modified linear spectral mixture analysis (MLSMA) method. Sentinel-2A MSI provided 10 m red, green, blue, and near-infrared spectral bands, and 20 m shortwave infrared spectral bands, which were used to extract impervious surfaces. We aimed to extract urban impervious surfaces at a spatial resolution of 10 m in the main urban area of Guangzhou, China. In MLSMA, a built-up image was first extracted from the normalized difference built-up index (NDBI) using the Otsu's method; the high-albedo, low-albedo, vegetation, and soil fractions were then estimated using conventional linear spectral mixture analysis (LSMA). The LSMA results were post-processed to extract high-precision impervious surface, vegetation, and soil fractions by integrating the built-up image and the normalized difference vegetation index (NDVI). The performance of MLSMA was evaluated using Landsat 8 Operational Land Imager (OLI) imagery. Experimental results revealed that MLSMA can extract the high-precision impervious surface fraction at 10 m with Sentinel-2A imagery. The 10 m impervious surface map of Sentinel-2A is capable of recovering more detail than the 30 m map of Landsat 8. In the Sentinel-2A impervious surface map, continuous roads and the boundaries of buildings in urban environments were clearly identified.
本研究探讨了使用改进的线性光谱混合分析(MLSMA)方法从 Sentinel-2A 多光谱仪器(MSI)影像中提取城市不透水面的性能。Sentinel-2A MSI 提供了 10 m 的红、绿、蓝和近红外光谱波段以及 20 m 的短波红外光谱波段,用于提取不透水面。我们的目标是在中国广州市主城区以 10 m 的空间分辨率提取城市不透水面。在 MLSMA 中,首先使用 Otsu 方法从归一化差异建筑指数(NDBI)中提取建成图像;然后使用传统的线性光谱混合分析(LSMA)估计高反照率、低反照率、植被和土壤分数。通过将建成图像和归一化差异植被指数(NDVI)集成,对 LSMA 结果进行后处理,以提取高精度的不透水面、植被和土壤分数。使用 Landsat 8 操作陆地成像仪(OLI)影像评估 MLSMA 的性能。实验结果表明,MLSMA 可以使用 Sentinel-2A 影像提取高精度的 10 m 不透水面分数。Sentinel-2A 的 10 m 不透水面图能够比 Landsat 8 的 30 m 图更好地恢复细节。在 Sentinel-2A 的不透水面图中,可以清晰地识别城市环境中的连续道路和建筑物边界。