Suppr超能文献

基于改进线性光谱混合分析的 Sentinel-2 多光谱影像高精度城市不透水面提取。

Extraction of High-Precision Urban Impervious Surfaces from Sentinel-2 Multispectral Imagery via Modified Linear Spectral Mixture Analysis.

机构信息

State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China.

Guangzhou Institute of Geography, Guangzhou 510070, China.

出版信息

Sensors (Basel). 2018 Aug 31;18(9):2873. doi: 10.3390/s18092873.

Abstract

This study explores the performance of Sentinel-2A Multispectral Instrument (MSI) imagery for extracting urban impervious surface using a modified linear spectral mixture analysis (MLSMA) method. Sentinel-2A MSI provided 10 m red, green, blue, and near-infrared spectral bands, and 20 m shortwave infrared spectral bands, which were used to extract impervious surfaces. We aimed to extract urban impervious surfaces at a spatial resolution of 10 m in the main urban area of Guangzhou, China. In MLSMA, a built-up image was first extracted from the normalized difference built-up index (NDBI) using the Otsu's method; the high-albedo, low-albedo, vegetation, and soil fractions were then estimated using conventional linear spectral mixture analysis (LSMA). The LSMA results were post-processed to extract high-precision impervious surface, vegetation, and soil fractions by integrating the built-up image and the normalized difference vegetation index (NDVI). The performance of MLSMA was evaluated using Landsat 8 Operational Land Imager (OLI) imagery. Experimental results revealed that MLSMA can extract the high-precision impervious surface fraction at 10 m with Sentinel-2A imagery. The 10 m impervious surface map of Sentinel-2A is capable of recovering more detail than the 30 m map of Landsat 8. In the Sentinel-2A impervious surface map, continuous roads and the boundaries of buildings in urban environments were clearly identified.

摘要

本研究探讨了使用改进的线性光谱混合分析(MLSMA)方法从 Sentinel-2A 多光谱仪器(MSI)影像中提取城市不透水面的性能。Sentinel-2A MSI 提供了 10 m 的红、绿、蓝和近红外光谱波段以及 20 m 的短波红外光谱波段,用于提取不透水面。我们的目标是在中国广州市主城区以 10 m 的空间分辨率提取城市不透水面。在 MLSMA 中,首先使用 Otsu 方法从归一化差异建筑指数(NDBI)中提取建成图像;然后使用传统的线性光谱混合分析(LSMA)估计高反照率、低反照率、植被和土壤分数。通过将建成图像和归一化差异植被指数(NDVI)集成,对 LSMA 结果进行后处理,以提取高精度的不透水面、植被和土壤分数。使用 Landsat 8 操作陆地成像仪(OLI)影像评估 MLSMA 的性能。实验结果表明,MLSMA 可以使用 Sentinel-2A 影像提取高精度的 10 m 不透水面分数。Sentinel-2A 的 10 m 不透水面图能够比 Landsat 8 的 30 m 图更好地恢复细节。在 Sentinel-2A 的不透水面图中,可以清晰地识别城市环境中的连续道路和建筑物边界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31a/6165222/9f03032e5f7d/sensors-18-02873-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验