Suppr超能文献

一种通过全卷积神经网络从哨兵 - 2 图像进行大规模人类住区范围测绘的框架。

A framework for large-scale mapping of human settlement extent from Sentinel-2 images via fully convolutional neural networks.

作者信息

Qiu Chunping, Schmitt Michael, Geiß Christian, Chen Tzu-Hsin Karen, Zhu Xiao Xiang

机构信息

Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Arcisstr. 21, 80333 Munich, Germany.

German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), Oberpfaffenhofen, 82234 Wessling, Germany.

出版信息

ISPRS J Photogramm Remote Sens. 2020 May;163:152-170. doi: 10.1016/j.isprsjprs.2020.01.028.

Abstract

Human settlement extent (HSE) information is a valuable indicator of world-wide urbanization as well as the resulting human pressure on the natural environment. Therefore, mapping HSE is critical for various environmental issues at local, regional, and even global scales. This paper presents a deep-learning-based framework to automatically map HSE from multi-spectral Sentinel-2 data using regionally available geo-products as training labels. A straightforward, simple, yet effective fully convolutional network-based architecture, Sen2HSE, is implemented as an example for semantic segmentation within the framework. The framework is validated against both manually labelled checking points distributed evenly over the test areas, and the OpenStreetMap building layer. The HSE mapping results were extensively compared to several baseline products in order to thoroughly evaluate the effectiveness of the proposed HSE mapping framework. The HSE mapping power is consistently demonstrated over 10 representative areas across the world. We also present one regional-scale and one country-wide HSE mapping example from our framework to show the potential for upscaling. The results of this study contribute to the generalization of the applicability of CNN-based approaches for large-scale urban mapping to cases where no up-to-date and accurate ground truth is available, as well as the subsequent monitor of global urbanization.

摘要

人类聚居地范围(HSE)信息是全球城市化以及由此产生的人类对自然环境压力的重要指标。因此,绘制HSE地图对于地方、区域乃至全球尺度上的各种环境问题至关重要。本文提出了一个基于深度学习的框架,利用区域可用的地理产品作为训练标签,从多光谱哨兵-2数据中自动绘制HSE地图。作为框架内语义分割的一个示例,实现了一个简单直接、有效且基于全卷积网络的架构Sen2HSE。该框架针对均匀分布在测试区域的手动标注检查点以及OpenStreetMap建筑图层进行了验证。将HSE地图绘制结果与几种基线产品进行了广泛比较,以全面评估所提出的HSE地图绘制框架的有效性。在全球10个代表性区域持续展示了HSE地图绘制能力。我们还从我们的框架中给出了一个区域尺度和一个全国范围的HSE地图绘制示例,以展示扩大规模的潜力。本研究结果有助于将基于卷积神经网络的方法在大规模城市地图绘制中的适用性推广到没有最新且准确地面真值的情况,以及后续对全球城市化的监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d64/7188251/9c9a2efe8516/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验