School of Sciences, Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, 063000, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611730, China; Gordon Life Science Institute, Boston, MA, 02478, USA.
Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
Anal Biochem. 2018 Nov 15;561-562:59-65. doi: 10.1016/j.ab.2018.09.002. Epub 2018 Sep 8.
As a prevalent post-transcriptional modification, N-methyladenosine (mA) plays key roles in a series of biological processes. Although experimental technologies have been developed and applied to identify mA sites, they are still cost-ineffective for transcriptome-wide detections of mA. As good complements to the experimental techniques, some computational methods have been proposed to identify mA sites. However, their performance remains unsatisfactory. In this study, we firstly proposed an Euclidean distance based method to construct a high quality benchmark dataset. By encoding the RNA sequences using pseudo nucleotide composition, a new predictor called iRNA(m6A)-PseDNC was developed to identify mA sites in the Saccharomyces cerevisiae genome. It has been demonstrated by the 10-fold cross validation test that the performance of iRNA(m6A)-PseDNC is superior to the existing methods. Meanwhile, for the convenience of most experimental scientists, established at the site http://lin-group.cn/server/iRNA(m6A)-PseDNC.php is its web-server, by which users can easily get their desired results without need to go through the detailed mathematics. It is anticipated that iRNA(m6A)-PseDNC will become a useful high throughput tool for identifying mA sites in the S. cerevisiae genome.
作为一种普遍的转录后修饰,N6-甲基腺苷(m6A)在一系列生物过程中发挥着关键作用。虽然已经开发和应用了实验技术来鉴定 mA 位点,但它们仍然无法有效地进行全转录组水平的 mA 检测。作为实验技术的良好补充,已经提出了一些计算方法来鉴定 mA 位点。然而,它们的性能仍然不尽如人意。在这项研究中,我们首先提出了一种基于欧几里得距离的方法来构建高质量的基准数据集。通过使用伪核苷酸组成对 RNA 序列进行编码,开发了一种新的称为 iRNA(m6A)-PseDNC 的预测器,用于鉴定酿酒酵母基因组中的 mA 位点。通过 10 倍交叉验证测试证明,iRNA(m6A)-PseDNC 的性能优于现有方法。同时,为了方便大多数实验科学家,我们在站点 http://lin-group.cn/server/iRNA(m6A)-PseDNC.php 上建立了它的网络服务器,用户可以轻松地获得他们所需的结果,而无需经历详细的数学运算。预计 iRNA(m6A)-PseDNC 将成为鉴定酿酒酵母基因组中 mA 位点的一种有用的高通量工具。