Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom.
Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):9744-9749. doi: 10.1073/pnas.1716252115. Epub 2018 Sep 10.
Cotranslational folding (CTF) is a fundamental molecular process that ensures efficient protein biosynthesis and minimizes the formation of misfolded states. However, the complexity of this process makes it extremely challenging to obtain structural characterizations of CTF pathways. Here, we correlate observations of translationally arrested nascent chains with those of a systematic C-terminal truncation strategy. We create a detailed description of chain length-dependent free energy landscapes associated with folding of the FLN5 filamin domain, in isolation and on the ribosome, and thus, quantify a substantial destabilization of the native structure on the ribosome. We identify and characterize two folding intermediates formed in isolation, including a partially folded intermediate associated with the isomerization of a conserved cis proline residue. The slow folding associated with this process raises the prospect that neighboring unfolded domains might accumulate and misfold during biosynthesis. We develop a simple model to quantify the risk of misfolding in this situation and show that catalysis of folding by peptidyl-prolyl isomerases is sufficient to eliminate this hazard.
共翻译(CTF)是一个基本的分子过程,它确保了蛋白质生物合成的高效率,并将错误折叠状态的形成最小化。然而,这个过程的复杂性使得获得 CTF 途径的结构特征变得极其具有挑战性。在这里,我们将翻译暂停的新生链的观察结果与系统的 C 末端截断策略的观察结果相关联。我们创建了一个详细的描述,描述了与 FLN5 细丝蛋白域的折叠相关的链长依赖性自由能景观,该域在核糖体上是孤立的,从而定量地描述了核糖体上天然结构的显著不稳定性。我们鉴定并表征了在孤立状态下形成的两种折叠中间体,包括与保守顺式脯氨酸残基异构化相关的部分折叠中间体。与这个过程相关的缓慢折叠提出了这样一种可能性,即在生物合成过程中,相邻的未折叠结构域可能会积累并错误折叠。我们开发了一个简单的模型来量化这种情况下错误折叠的风险,并表明肽基脯氨酰基异构酶的折叠催化作用足以消除这种危险。