Streit Julian O, Chan Sammy H S, Daya Saifu, Christodoulou John
Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
Nat Commun. 2025 May 8;16(1):4300. doi: 10.1038/s41467-025-59105-6.
Proteins are investigated in increasingly more complex biological systems, where F NMR is proving highly advantageous due to its high gyromagnetic ratio and background-free spectra. Its application has, however, been hindered by limited chemical shift dispersions and an incomprehensive relationship between chemical shifts and protein structure. Here, we exploit the sensitivity of F chemical shifts to ring currents by designing labels with direct contact to a native or engineered aromatic ring. Fifty protein variants predicted by AlphaFold and molecular dynamics simulations show 80-90% success rates and direct correlations of their experimental chemical shifts with the magnitude of the engineered ring current. Our method consequently improves the chemical shift dispersion and through simple 1D experiments enables structural analyses of alternative conformational states, including ribosome-bound folding intermediates, and in-cell measurements of protein-protein interactions and thermodynamics. Our strategy thus provides a simple and sensitive tool to extract residue contact restraints from chemical shifts for previously intractable systems.
蛋白质在越来越复杂的生物系统中得到研究,在这些系统中,氟核磁共振(F NMR)因其高旋磁比和无背景光谱而显示出极大优势。然而,其应用受到化学位移分散有限以及化学位移与蛋白质结构之间关系不全面的阻碍。在此,我们通过设计与天然或工程化芳香环直接接触的标签,利用氟化学位移对环电流的敏感性。通过AlphaFold和分子动力学模拟预测的五十种蛋白质变体显示出80 - 90%的成功率,并且其实验化学位移与工程化环电流的大小直接相关。因此,我们的方法改善了化学位移分散,并通过简单的一维实验能够对包括核糖体结合折叠中间体在内的替代构象状态进行结构分析,以及在细胞内测量蛋白质 - 蛋白质相互作用和热力学。我们的策略因此提供了一种简单且灵敏的工具,可从化学位移中提取以前难以处理的系统的残基接触限制。