Suppr超能文献

mRNA 疫苗接种与电荷改变的可释放载体一起,可引发人体 T 细胞反应,并在小鼠中治愈已建立的肿瘤。

mRNA vaccination with charge-altering releasable transporters elicits human T cell responses and cures established tumors in mice.

机构信息

Stanford Cancer Institute, Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305.

Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0020 Oslo, Norway.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9153-E9161. doi: 10.1073/pnas.1810002115. Epub 2018 Sep 10.

Abstract

In vivo delivery of antigen-encoding mRNA is a promising approach to personalized cancer treatment. The therapeutic efficacy of mRNA vaccines is contingent on safe and efficient gene delivery, biological stability of the mRNA, and the immunological properties of the vaccine. Here we describe the development and evaluation of a versatile and highly efficient mRNA vaccine-delivery system that employs charge-altering releasable transporters (CARTs) to deliver antigen-coding mRNA to antigen-presenting cells (APCs). We demonstrate in human peripheral blood mononuclear cells that CART vaccines can activate a robust antigen-specific immune response against mRNA-encoded viral epitopes. In an established mouse model, we demonstrate that CARTs preferentially target professional APCs in secondary lymphoid organs upon i.v. injections and target local APCs upon s.c. injection. Finally, we show that CARTs coformulated with mRNA and a Toll-like receptor ligand simultaneously transfect and activate target cells to generate an immune response that can treat and cure mice with large, established tumors.

摘要

在体递送抗原编码 mRNA 是一种很有前途的个性化癌症治疗方法。mRNA 疫苗的治疗效果取决于安全有效的基因递送、mRNA 的生物稳定性和疫苗的免疫原性。在这里,我们描述了一种多功能、高效的 mRNA 疫苗递送系统的开发和评估,该系统利用电荷改变型可释放载体(CART)将抗原编码 mRNA 递送到抗原呈递细胞(APC)。我们在人外周血单核细胞中证明,CART 疫苗可以激活针对 mRNA 编码病毒表位的强大抗原特异性免疫反应。在已建立的小鼠模型中,我们证明 CART 经静脉注射后优先靶向次级淋巴器官中的专业 APC,经皮内注射后靶向局部 APC。最后,我们表明,与 TLR 配体共配制的 CART 可同时转染和激活靶细胞,引发免疫反应,从而治疗和治愈具有大的已建立肿瘤的小鼠。

相似文献

5
mRNA Cancer Vaccines.信使核糖核酸癌症疫苗
Recent Results Cancer Res. 2016;209:61-85. doi: 10.1007/978-3-319-42934-2_5.

引用本文的文献

2
Decrypting the Immune Symphony for RNA Vaccines.解读RNA疫苗的免疫乐章
Vaccines (Basel). 2025 Aug 20;13(8):882. doi: 10.3390/vaccines13080882.
4
Nanotechnology-based mRNA vaccines.基于纳米技术的mRNA疫苗。
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
8
Nonviral targeted mRNA delivery: principles, progresses, and challenges.非病毒靶向mRNA递送:原理、进展与挑战。
MedComm (2020). 2025 Jan 2;6(1):e70035. doi: 10.1002/mco2.70035. eCollection 2025 Jan.

本文引用的文献

4
Nanomaterial-Enabled Cancer Therapy.纳米材料介导的癌症治疗
Mol Ther. 2017 Jul 5;25(7):1501-1513. doi: 10.1016/j.ymthe.2017.04.026. Epub 2017 May 19.
7
Systemic delivery of factor IX messenger RNA for protein replacement therapy.用于蛋白质替代疗法的IX因子信使核糖核酸的全身递送
Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):E1941-E1950. doi: 10.1073/pnas.1619653114. Epub 2017 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验