Suppr超能文献

囊泡亚池在毛细胞带状突触的组织。

Vesicle sub-pool organization at inner hair cell ribbon synapses.

机构信息

Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.

Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.

出版信息

EMBO Rep. 2018 Nov;19(11). doi: 10.15252/embr.201744937. Epub 2018 Sep 10.

Abstract

The afferent inner hair cell synapse harbors the synaptic ribbon, which ensures a constant vesicle supply. Synaptic vesicles (SVs) are arranged in morphologically discernable pools, linked via filaments to the ribbon or the presynaptic membrane. We propose that filaments play a major role in SV resupply and exocytosis at the ribbon. Using advanced electron microscopy, we demonstrate that SVs are organized in sub-pools defined by the filament number per vesicle and its connections. Upon stimulation, SVs increasingly linked to other vesicles and to the ribbon, whereas single-tethered SVs dominated at the membrane. Mutant mice for the hair cell protein otoferlin (, ) are profoundly deaf with reduced sustained release, serving as a model to investigate the SV replenishment at IHCs. Upon stimulation, multiple-tethered and docked vesicles (rarely observed in wild-type) accumulated at active zones due to an impairment downstream of docking. Conclusively, vesicles are organized in sub-pools at ribbon-type active zones by filaments to support vesicle supply, transport, and finally release.

摘要

传入内毛细胞突触含有突触小带,它确保了囊泡的持续供应。突触小泡(SVs)排列在形态上可分辨的池中,通过细丝与小带或突触前膜相连。我们提出,细丝在小带处的 SV 再供应和胞吐中起主要作用。使用先进的电子显微镜,我们证明 SVs 是由每个囊泡的细丝数量及其连接来定义的亚池组织的。在刺激下,SVs 越来越多地与其他囊泡和小带相连,而在膜上则以单连接的 SVs 为主。毛细胞蛋白 otoferlin(otoferlin)的突变小鼠耳聋严重,持续释放减少,可作为研究 IHCs 中 SV 补充的模型。在刺激下,由于停靠下游的损伤,多连接和停靠的囊泡(在野生型中很少观察到)在活性区积累。总之,细丝将囊泡在小带型活性区组织成亚池,以支持囊泡供应、运输,最终释放。

相似文献

1
Vesicle sub-pool organization at inner hair cell ribbon synapses.
EMBO Rep. 2018 Nov;19(11). doi: 10.15252/embr.201744937. Epub 2018 Sep 10.
5
Unconventional molecular regulation of synaptic vesicle replenishment in cochlear inner hair cells.
J Cell Sci. 2015 Feb 15;128(4):638-44. doi: 10.1242/jcs.162099. Epub 2015 Jan 20.
7
Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells.
Nat Neurosci. 2010 Jul;13(7):869-76. doi: 10.1038/nn.2578. Epub 2010 Jun 20.
8
Endophilin-A regulates presynaptic Ca influx and synaptic vesicle recycling in auditory hair cells.
EMBO J. 2019 Mar 1;38(5). doi: 10.15252/embj.2018100116. Epub 2019 Feb 7.
9
Functional alteration of ribbon synapses in inner hair cells by noise exposure causing hidden hearing loss.
Neurosci Lett. 2019 Aug 10;707:134268. doi: 10.1016/j.neulet.2019.05.022. Epub 2019 May 16.

引用本文的文献

1
[The natural history of the relationship between mutation-related genotypes and audiological phenotypes].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2025 Apr;39(4):379-385. doi: 10.13201/j.issn.2096-7993.2025.04.016.
2
Bridging the gap between presynaptic hair cell function and neural sound encoding.
Elife. 2024 Dec 24;12:RP93749. doi: 10.7554/eLife.93749.
3
Spatial patterns of noise-induced inner hair cell ribbon loss in the mouse mid-cochlea.
iScience. 2024 Jan 8;27(2):108825. doi: 10.1016/j.isci.2024.108825. eCollection 2024 Feb 16.
4
Developmental changes of the mitochondria in the murine anteroventral cochlear nucleus.
iScience. 2023 Dec 8;27(1):108700. doi: 10.1016/j.isci.2023.108700. eCollection 2024 Jan 19.
5
Ca regulation of glutamate release from inner hair cells of hearing mice.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2311539120. doi: 10.1073/pnas.2311539120. Epub 2023 Nov 29.
6
Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses.
EMBO J. 2023 Dec 1;42(23):e114587. doi: 10.15252/embj.2023114587. Epub 2023 Oct 6.
7
Age-dependent structural reorganization of utricular ribbon synapses.
Front Cell Dev Biol. 2023 Aug 10;11:1178992. doi: 10.3389/fcell.2023.1178992. eCollection 2023.
8
Piccolino is required for ribbon architecture at cochlear inner hair cell synapses and for hearing.
EMBO Rep. 2023 Sep 6;24(9):e56702. doi: 10.15252/embr.202256702. Epub 2023 Jul 21.
9
Single-Molecule Localization Microscopy of Presynaptic Active Zones in after Rapid Cryofixation.
Int J Mol Sci. 2023 Jan 21;24(3):2128. doi: 10.3390/ijms24032128.

本文引用的文献

3
The Calcium Channel C-Terminal and Synaptic Vesicle Tethering: Analysis by Immuno-Nanogold Localization.
Front Cell Neurosci. 2017 Mar 30;11:85. doi: 10.3389/fncel.2017.00085. eCollection 2017.
4
Hair cell synaptic dysfunction, auditory fatigue and thermal sensitivity in otoferlin Ile515Thr mutants.
EMBO J. 2016 Dec 1;35(23):2519-2535. doi: 10.15252/embj.201694564. Epub 2016 Oct 11.
5
A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking.
J Neurosci. 2016 Mar 16;36(11):3222-30. doi: 10.1523/JNEUROSCI.2939-15.2016.
7
Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy.
J Cell Sci. 2015 Jul 15;128(14):2529-40. doi: 10.1242/jcs.170761. Epub 2015 Jun 4.
8
Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones.
Proc Natl Acad Sci U S A. 2015 Jun 16;112(24):E3141-9. doi: 10.1073/pnas.1417207112. Epub 2015 Jun 1.
9
Relating structure and function of inner hair cell ribbon synapses.
Cell Tissue Res. 2015 Jul;361(1):95-114. doi: 10.1007/s00441-014-2102-7. Epub 2015 Jan 22.
10
Presynaptic architecture of the larval zebrafish neuromuscular junction.
J Comp Neurol. 2015 Sep 1;523(13):1984-97. doi: 10.1002/cne.23775. Epub 2015 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验