Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.
Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen 37075, Germany.
Proc Natl Acad Sci U S A. 2023 Dec 5;120(49):e2311539120. doi: 10.1073/pnas.2311539120. Epub 2023 Nov 29.
In our hearing organ, sound is encoded at ribbon synapses formed by inner hair cells (IHCs) and spiral ganglion neurons (SGNs). How the underlying synaptic vesicle (SV) release is controlled by Ca in IHCs of hearing animals remained to be investigated. Here, we performed patch-clamp SGN recordings of the initial rate of release evoked by brief IHC Ca-influx in an ex vivo cochlear preparation from hearing mice. We aimed to closely mimic physiological conditions by perforated-patch recordings from IHCs kept at the physiological resting potential and at body temperature. We found release to relate supralinearly to Ca-influx (power, : 4.3) when manipulating the [Ca] available for SV release by Zn-flicker-blocking of the single Ca-channel current. In contrast, a near linear Ca dependence (: 1.2 to 1.5) was observed when varying the number of open Ca-channels during deactivating Ca-currents and by dihydropyridine channel-inhibition. Concurrent changes of number and current of open Ca-channels over the range of physiological depolarizations revealed : 1.8. These findings indicate that SV release requires ~4 Ca-ions to bind to their Ca-sensor of fusion. We interpret the near linear Ca-dependence of release during manipulations that change the number of open Ca-channels to reflect control of SV release by the high [Ca] in the Ca-nanodomain of one or few nearby Ca-channels. We propose that a combination of Ca nanodomain control and supralinear intrinsic Ca-dependence of fusion optimally links SV release to the timing and amplitude of the IHC receptor potential and separates it from other IHC Ca-signals unrelated to afferent synaptic transmission.
在我们的听觉器官中,声音是在内耳毛细胞 (IHC) 和螺旋神经节神经元 (SGN) 形成的带状突触处进行编码的。听觉动物的 IHC 中 Ca 如何控制基础突触小泡 (SV) 的释放仍有待研究。在这里,我们在来自听力正常小鼠的离体耳蜗标本中进行了 SGN 记录,以检测 IHC Ca 内流诱发的短暂释放的初始释放率。我们的目标是通过在生理静息电位和体温下对 IHC 进行穿孔贴片记录,来紧密模拟生理条件。我们发现,当通过 Zn 闪烁阻断单钙通道电流来操纵 SV 释放的可用 Ca 时,释放与 Ca 流入呈超线性关系(幂律:4.3)。相比之下,当在去激活 Ca 电流期间改变开放 Ca 通道的数量或通过二氢吡啶通道抑制来改变开放 Ca 通道的数量时,观察到近线性的 Ca 依赖性(:1.2 至 1.5)。在生理去极化范围内观察到开放 Ca 通道的数量和电流的同时变化,发现:1.8。这些发现表明,SV 释放需要大约 4 个 Ca 离子与它们的融合 Ca 传感器结合。我们将改变开放 Ca 通道数量时释放的近线性 Ca 依赖性解释为反映了 SV 释放的控制,这是由于一个或少数几个附近 Ca 通道的 Ca 纳米域中的高 Ca 所致。我们提出,Ca 纳米域控制和融合的超线性内在 Ca 依赖性的结合,最佳地将 SV 释放与 IHC 受体电位的时间和幅度联系起来,并将其与不相关的传入突触传递的其他 IHC Ca 信号区分开来。