Wang Yu, He Ye, Boushey Carol J, Zhu Fengqing, Delp Edward J
Purdue University, West Lafayette, Indiana, USA.
Google Inc, Mountain View, California, USA, Tel.: +1765-418-8131.
Multimed Tools Appl. 2018 Aug;77(15):19769-19794. doi: 10.1007/s11042-017-5346-x. Epub 2017 Nov 25.
Dietary assessment is essential for understanding the link between diet and health. We develop a context based image analysis system for dietary assessment to automatically segment, identify and quantify food items from images. In this paper, we describe image segmentation and object classification methods used in our system to detect and identify food items. We then use context information to refine the classification results. We define contextual dietary information as the data that is not directly produced by the visual appearance of an object in the image, but yields information about a user's diet or can be used for diet planning. We integrate contextual dietary information that a user supplies to the system either explicitly or implicitly to correct potential misclassifications. We evaluate our models using food image datasets collected during dietary assessment studies from natural eating events.
饮食评估对于理解饮食与健康之间的联系至关重要。我们开发了一种基于上下文的图像分析系统用于饮食评估,以自动从图像中分割、识别和量化食物项目。在本文中,我们描述了我们系统中用于检测和识别食物项目的图像分割和目标分类方法。然后,我们使用上下文信息来细化分类结果。我们将上下文饮食信息定义为不是由图像中物体的视觉外观直接产生的,但能产生有关用户饮食的信息或可用于饮食计划的数据。我们整合用户明确或隐含提供给系统的上下文饮食信息,以纠正潜在的错误分类。我们使用在饮食评估研究期间从自然饮食事件中收集的食物图像数据集来评估我们的模型。