Suppr超能文献

基于上下文的图像分析及其在饮食评估与评价中的应用

Context Based Image Analysis With Application in Dietary Assessment and Evaluation.

作者信息

Wang Yu, He Ye, Boushey Carol J, Zhu Fengqing, Delp Edward J

机构信息

Purdue University, West Lafayette, Indiana, USA.

Google Inc, Mountain View, California, USA, Tel.: +1765-418-8131.

出版信息

Multimed Tools Appl. 2018 Aug;77(15):19769-19794. doi: 10.1007/s11042-017-5346-x. Epub 2017 Nov 25.

Abstract

Dietary assessment is essential for understanding the link between diet and health. We develop a context based image analysis system for dietary assessment to automatically segment, identify and quantify food items from images. In this paper, we describe image segmentation and object classification methods used in our system to detect and identify food items. We then use context information to refine the classification results. We define contextual dietary information as the data that is not directly produced by the visual appearance of an object in the image, but yields information about a user's diet or can be used for diet planning. We integrate contextual dietary information that a user supplies to the system either explicitly or implicitly to correct potential misclassifications. We evaluate our models using food image datasets collected during dietary assessment studies from natural eating events.

摘要

饮食评估对于理解饮食与健康之间的联系至关重要。我们开发了一种基于上下文的图像分析系统用于饮食评估,以自动从图像中分割、识别和量化食物项目。在本文中,我们描述了我们系统中用于检测和识别食物项目的图像分割和目标分类方法。然后,我们使用上下文信息来细化分类结果。我们将上下文饮食信息定义为不是由图像中物体的视觉外观直接产生的,但能产生有关用户饮食的信息或可用于饮食计划的数据。我们整合用户明确或隐含提供给系统的上下文饮食信息,以纠正潜在的错误分类。我们使用在饮食评估研究期间从自然饮食事件中收集的食物图像数据集来评估我们的模型。

相似文献

1
Context Based Image Analysis With Application in Dietary Assessment and Evaluation.
Multimed Tools Appl. 2018 Aug;77(15):19769-19794. doi: 10.1007/s11042-017-5346-x. Epub 2017 Nov 25.
2
Image Segmentation for Image-Based Dietary Assessment: A Comparative Study.
ISSCS 2013 (2013). 2013 Jul;2013. doi: 10.1109/ISSCS.2013.6651268. Epub 2013 Oct 31.
3
CONTEXT BASED FOOD IMAGE ANALYSIS.
Proc Int Conf Image Proc. 2013 Sep;2013:2748-2752. doi: 10.1109/ICIP.2013.6738566. Epub 2014 Feb 13.
4
Quantifying and transferring contextual information in object detection.
IEEE Trans Pattern Anal Mach Intell. 2012 Apr;34(4):762-77. doi: 10.1109/TPAMI.2011.164.
6
Specular Highlight Removal For Image-Based Dietary Assessment.
IEEE Int Conf Multimed Expo Workshops. 2012 Jul;2012:424-428. doi: 10.1109/ICMEW.2012.80. Epub 2012 Aug 16.
7
Segmentation Assisted Food Classification for Dietary Assessment.
Proc SPIE Int Soc Opt Eng. 2011 Jan 24;7873:78730B. doi: 10.1117/12.877036.
8
Multilevel Segmentation for Food Classification in Dietary Assessment.
Proc Int Symp Image Signal Process Anal. 2011 Sep 4:337-342.
9
FOOD IMAGE ANALYSIS: SEGMENTATION, IDENTIFICATION AND WEIGHT ESTIMATION.
Proc (IEEE Int Conf Multimed Expo). 2013 Jul;2013. doi: 10.1109/ICME.2013.6607548. Epub 2013 Sep 26.
10
An Interactive Image Segmentation Method Based on Multi-Level Semantic Fusion.
Sensors (Basel). 2023 Jul 14;23(14):6394. doi: 10.3390/s23146394.

引用本文的文献

1
The association of cognitive task scores with energy intake measurement error from technology-assisted 24-h recalls.
Br J Nutr. 2025 Mar 28;133(6):855-864. doi: 10.1017/S000711452500042X. Epub 2025 Mar 3.
3
Integrated image and sensor-based food intake detection in free-living.
Sci Rep. 2024 Jan 18;14(1):1665. doi: 10.1038/s41598-024-51687-3.
4
Validity of an Artificial Intelligence-Based Application to Identify Foods and Estimate Energy Intake Among Adults: A Pilot Study.
Curr Dev Nutr. 2023 Sep 29;7(11):102009. doi: 10.1016/j.cdnut.2023.102009. eCollection 2023 Nov.
5
Health and sustainability co-benefits of eating behaviors: Towards a science of dietary eco-wellness.
Prev Med Rep. 2022 Jun 27;28:101878. doi: 10.1016/j.pmedr.2022.101878. eCollection 2022 Aug.
6
Applying Image-Based Food-Recognition Systems on Dietary Assessment: A Systematic Review.
Adv Nutr. 2022 Dec 22;13(6):2590-2619. doi: 10.1093/advances/nmac078.
10

本文引用的文献

1
The Use of Temporal Information in Food Image Analysis.
New Trends Image Anal Process ICIAP 2015 Workshops (2015). 2015 Sep;9281:317-325. doi: 10.1007/978-3-319-23222-5_39. Epub 2015 Aug 21.
2
Image Segmentation for Image-Based Dietary Assessment: A Comparative Study.
ISSCS 2013 (2013). 2013 Jul;2013. doi: 10.1109/ISSCS.2013.6651268. Epub 2013 Oct 31.
3
ANALYSIS OF FOOD IMAGES: FEATURES AND CLASSIFICATION.
Proc Int Conf Image Proc. 2014 Oct;2014:2744-2748. doi: 10.1109/ICIP.2014.7025555. Epub 2015 Jan 29.
4
Single-View Food Portion Estimation Based on Geometric Models.
ISM. 2015 Dec;2015:385-390. doi: 10.1109/ISM.2015.67. Epub 2016 Mar 28.
5
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
6
Multiple hypotheses image segmentation and classification with application to dietary assessment.
IEEE J Biomed Health Inform. 2015 Jan;19(1):377-88. doi: 10.1109/JBHI.2014.2304925.
7
Merging dietary assessment with the adolescent lifestyle.
J Hum Nutr Diet. 2014 Jan;27 Suppl 1(0 1):82-8. doi: 10.1111/jhn.12071. Epub 2013 Mar 13.
8
The Use of Mobile Devices in Aiding Dietary Assessment and Evaluation.
IEEE J Sel Top Signal Process. 2010 Aug;4(4):756-766. doi: 10.1109/JSTSP.2010.2051471.
9
Contextual object localization with multiple kernel nearest neighbor.
IEEE Trans Image Process. 2011 Feb;20(2):570-85. doi: 10.1109/TIP.2010.2068556. Epub 2010 Aug 23.
10
DAISY: an efficient dense descriptor applied to wide-baseline stereo.
IEEE Trans Pattern Anal Mach Intell. 2010 May;32(5):815-30. doi: 10.1109/TPAMI.2009.77.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验