Zhang Qiu, Lu Yanying, Miao Licheng, Zhao Qing, Xia Kexin, Liang Jing, Chou Shu-Lei, Chen Jun
Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Institute for Superconducting & Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
Angew Chem Int Ed Engl. 2018 Nov 5;57(45):14796-14800. doi: 10.1002/anie.201808592. Epub 2018 Oct 9.
Highly reversible, stable, and non-dendritic metal anode (Li, Na etc.) is a crucial requirement for next-generation high-energy batteries. Herein, we have built a Li-Na hybrid battery (LNHB) based on Na plating/stripping, which features a high and stable coulombic efficiency of 99.2 % after 100 cycles, low voltage hysteresis (42 mV at 2 mA cm ), and fast charge transfer. As a result of the Li electrostatic shield layer, the Na deposition showed cubic morphology rather than dendritic, even at high current density of 5 mA cm . The solvation/desolvation of Li and Na were modelled by density functional theory calculations, demonstrating the fast desolvation kinetics of Na . Owing to the superior performance of the Na metal anode, the LNHB coupled with LiFePO cathode exhibited low voltage hysteresis and stable cycling performance that demonstrates its feasibility in practical applications.
高度可逆、稳定且无枝晶的金属阳极(锂、钠等)是下一代高能电池的关键要求。在此,我们基于钠的电镀/脱镀构建了一种锂-钠混合电池(LNHB),其在100次循环后具有99.2%的高且稳定的库仑效率、低电压滞后(2 mA cm 时为42 mV)以及快速的电荷转移。由于锂静电屏蔽层的作用,即使在5 mA cm 的高电流密度下,钠沉积也呈现立方形态而非枝晶形态。通过密度泛函理论计算对锂和钠的溶剂化/去溶剂化进行了建模,证明了钠的快速去溶剂化动力学。由于钠金属阳极的优异性能,与磷酸铁锂阴极耦合的LNHB表现出低电压滞后和稳定的循环性能,证明了其在实际应用中的可行性。