From the Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303.
the Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, and.
J Biol Chem. 2018 Oct 26;293(43):16761-16777. doi: 10.1074/jbc.RA118.004862. Epub 2018 Sep 11.
Respiratory syncytial virus (RSV) represents a significant health threat to infants and to elderly or immunocompromised individuals. There are currently no vaccines available to prevent RSV infections, and disease management is largely limited to supportive care, making the identification and development of effective antiviral therapeutics against RSV a priority. To identify effective chemical scaffolds for managing RSV disease, we conducted a high-throughput anti-RSV screen of a 57,000-compound library. We identified a hit compound that specifically blocked activity of the RSV RNA-dependent RNA polymerase (RdRp) complex, initially with moderate low-micromolar potency. Mechanistic characterization in an RSV RdRp assay indicated that representatives of this compound class block elongation of RSV RNA products after initial extension by up to three nucleotides. Synthetic hit-to-lead exploration yielded an informative 3D quantitative structure-activity relationship (3D-QSAR) model and resulted in analogs with more than 20-fold improved potency and selectivity indices (SIs) of >1,000. However, first-generation leads exhibited limited water solubility and poor metabolic stability. A second optimization strategy informed by the 3D-QSAR model combined with pharmacokinetics (PK) predictions yielded an advanced lead, AVG-233, that demonstrated nanomolar activity against both laboratory-adapted RSV strains and clinical RSV isolates. This anti-RSV activity extended to infection of established cell lines and primary human airway cells. PK profiling in mice revealed 34% oral bioavailability of AVG-233 and sustained high drug levels in the circulation after a single oral dose of 20 mg/kg. This promising first-in-class lead warrants further development as an anti-RSV drug.
呼吸道合胞病毒(RSV)对婴儿以及老年或免疫功能低下的个体构成重大健康威胁。目前尚无预防 RSV 感染的疫苗,疾病管理主要限于支持性护理,因此,鉴定和开发针对 RSV 的有效抗病毒治疗方法是当务之急。为了确定用于管理 RSV 疾病的有效化学支架,我们对包含 57000 种化合物的文库进行了高通量抗 RSV 筛选。我们鉴定出一种能特异性阻断 RSV RNA 依赖性 RNA 聚合酶(RdRp)复合物活性的命中化合物,该化合物最初具有中等低微摩尔效力。在 RSV RdRp 测定中的机制特征表明,该化合物类别的代表物在初始延伸后最多可阻断 RSV RNA 产物的延伸达三个核苷酸。从命中化合物到先导化合物的探索产生了一个信息丰富的三维定量构效关系(3D-QSAR)模型,并得到了比活性提高 20 多倍且选择性指数(SI)大于 1000 的类似物。然而,第一代先导化合物的水溶性和代谢稳定性有限。基于 3D-QSAR 模型和药代动力学(PK)预测的第二次优化策略产生了一种先进的先导化合物 AVG-233,它对实验室适应的 RSV 株和临床 RSV 分离株均表现出纳摩尔级别的活性。这种抗 RSV 活性扩展到已建立的细胞系和原代人气道细胞的感染。在小鼠中的 PK 特征分析显示,AVG-233 的口服生物利用度为 34%,单次口服 20mg/kg 后,循环中药物水平持续高。这种有前景的首创类先导化合物值得进一步开发为抗 RSV 药物。