Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069, Dresden, Germany.
Sci Rep. 2018 Sep 12;8(1):13655. doi: 10.1038/s41598-018-31905-5.
Advanced cell therapies require robust delivery materials and silk is a promising contender with a long clinical track record. Our aim was to optimise self-assembling silk hydrogels as a mesenchymal stem cell (MSC)-support matrix that would allow future minimally invasive brain application. We used sonication energy to programme the transition of silk (1-5% w/v) secondary structure from a random coil to a stable β-sheet configuration. This allowed fine tuning of self-assembling silk hydrogels to achieve space conformity in the absence of any silk hydrogel swelling and to support uniform cell distribution as well as cell viability. Embedded cells underwent significant proliferation over 14 days in vitro, with the best proliferation achieved with 2% w/v hydrogels. Embedded MSCs showed significantly better viability in vitro after injection through a 30G needle when the gels were in the pre-gelled versus post-gelled state. Silk hydrogels (4% w/v) with physical characteristics matching brain tissue were visualised in preliminary in vivo experiments to exhibit good space conformity in an ischemic cavity (intraluminal thread middle cerebral artery occlusion model) in adult male Sprague-Dawley rats (n = 3). This study informs on optimal MSC-hydrogel matrix conditions for minimally invasive application as a platform for future experiments targeting brain repair.
高级细胞疗法需要强大的输送材料,而丝蛋白是一种很有前途的候选材料,具有长期的临床记录。我们的目标是优化自组装丝素水凝胶作为间充质干细胞(MSC)的支持基质,以便未来能够进行微创脑内应用。我们使用超声能量来调控丝素(1-5%w/v)二级结构从无规卷曲向稳定的β-折叠构象的转变。这使得我们能够精细调节自组装丝素水凝胶,以实现在没有任何水凝胶溶胀的情况下适应空间,并支持均匀的细胞分布和细胞活力。体外培养 14 天内,细胞发生了显著增殖,其中 2%w/v 的水凝胶增殖效果最佳。当凝胶处于预凝胶状态而不是凝胶后状态时,通过 30G 针头注射后,嵌入的 MSC 在体外表现出更好的活力。具有与脑组织物理特性相匹配的丝素水凝胶(4%w/v)在初步的体内实验中可视化,在成年雄性 Sprague-Dawley 大鼠(n=3)的缺血性腔(管腔内大脑中动脉闭塞模型)中显示出良好的空间适应性。这项研究为微创应用提供了最佳的 MSC-水凝胶基质条件,为未来针对大脑修复的实验提供了一个平台。