Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea.
Institute of Tissue Regeneration Engineering (ITREN), Dankook University, South Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, South Korea; Glass Research Department, National Research Centre, Cairo, 12622, Egypt.
Acta Biomater. 2018 Mar 15;69:218-233. doi: 10.1016/j.actbio.2017.12.026. Epub 2018 Feb 2.
UNLABELLED: Cell encapsulating hydrogels with tunable mechanical and biological properties are of special importance for cell delivery and tissue engineering. Silk fibroin and collagen, two typical important biological proteins, are considered potential as cell culture hydrogels. However, both have been used individually, with limited properties (e.g., collagen has poor mechanical properties and cell-mediated shrinkage, and silk fibroin from Bombyx mori (mulberry) lacks cell adhesion motifs). Therefore, the combination of them is considered to achieve improved mechanical and biological properties with respect to individual hydrogels. Here, we show that the cell-encapsulating hydrogels of mulberry silk fibroin / collagen are implementable over a wide range of compositions, enabled simply by combining the different gelation mechanisms. Not only the gelation reaction but also the structural characteristics, consequently, the mechanical properties and cellular behaviors are accelerated significantly by the silk fibroin / collagen hybrid hydrogel approach. Of note, the mechanical and biological properties are tunable to represent the combined merits of individual proteins. The shear storage modulus is tailored to range from 0.1 to 20 kPa along the iso-compositional line, which is considered to cover the matrix stiffness of soft-to-hard tissues. In particular, the silk fibroin / collagen hydrogels are highly elastic, exhibiting excellent resistance to permanent deformation under different modes of stress; without being collapsed or water-squeezed out (vs. not possible in individual proteins) - which results from the mechanical synergism of interpenetrating networks of both proteins. Furthermore, the role of collagen protein component in the hybrid hydrogels provides adhesive sites to cells, stimulating anchorage and spreading significantly with respect to mulberry silk fibroin gel, which lacks cell adhesion motifs. The silk fibroin / collagen hydrogels can encapsulate cells while preserving the viability and growth over a long 3D culture period. Our findings demonstrate that the silk / collagen hydrogels possess physical and biological properties tunable and significantly improved (vs. the individual protein gels), implying their potential uses for cell delivery and tissue engineering. STATEMENT OF SIGNIFICANCE: Development of cell encapsulating hydrogels with excellent physical and biological properties is important for the cell delivery and cell-based tissue engineering. Here we communicate for the first time the novel protein composite hydrogels comprised of 'Silk' and 'Collagen' and report their outstanding physical, mechanical and biological properties that are not readily achievable with individual protein hydrogels. The properties include i) gelation accelerated over a wide range of compositions, ii) stiffness levels covering 0.1 kPa to 20 kPa that mimic those of soft-to-hard tissues, iii) excellent elastic behaviors under various stress modes (bending, twisting, stretching, and compression), iv) high resistance to cell-mediated gel contraction, v) rapid anchorage and spreading of cells, and vi) cell encapsulation ability with a long-term survivability. These results come from the synergism of individual proteins of alpha-helix and beta-sheet structured networks. We consider the current elastic cell-encapsulating hydrogels of silk-collagen can be potentially useful for the cell delivery and tissue engineering in a wide spectrum of soft-to-hard tissues.
未加标签:具有可调机械和生物学特性的细胞包封水凝胶对于细胞输送和组织工程特别重要。丝素蛋白和胶原蛋白是两种典型的重要生物蛋白,被认为是潜在的细胞培养水凝胶。然而,两者都曾被单独使用,其性能有限(例如,胶原蛋白的机械性能和细胞介导的收缩较差,而来自家蚕(桑蚕)的丝素蛋白缺乏细胞黏附基序)。因此,将它们组合在一起被认为可以实现相对于单个水凝胶的机械和生物学性能的改善。在这里,我们表明,通过简单地结合不同的凝胶化机制,丝素蛋白/胶原蛋白的细胞包封水凝胶可在很宽的组成范围内实现。不仅凝胶反应,而且结构特征,因此,机械性能和细胞行为都通过丝素蛋白/胶原蛋白混合水凝胶方法得到了显著加速。值得注意的是,机械和生物学性能是可调的,可以代表单个蛋白质的综合优点。剪切储能模量可沿等组成线从 0.1 kPa 到 20 kPa 进行调节,这被认为涵盖了从软组织到硬组织的基质刚度范围。特别是,丝素蛋白/胶原蛋白水凝胶具有高弹性,在不同的应力模式下表现出对永久变形的优异抵抗力;不会坍塌或被挤出(与单个蛋白质不同)-这是由于两种蛋白质的互穿网络的机械协同作用所致。此外,胶原蛋白蛋白成分在混合水凝胶中的作用为细胞提供了附着点,相对于缺乏细胞黏附基序的桑蚕丝素蛋白凝胶,显著刺激了细胞的附着和扩展。丝素蛋白/胶原蛋白水凝胶可以在长期的 3D 培养过程中包裹细胞,同时保持细胞的活力和生长。我们的研究结果表明,丝/胶原水凝胶具有可调节且显著改善的物理和生物学特性(与单个蛋白质凝胶相比),这意味着它们在细胞输送和组织工程中的潜在用途。
意义声明:开发具有优异物理和生物学特性的细胞包封水凝胶对于细胞输送和基于细胞的组织工程非常重要。在这里,我们首次交流了由“丝”和“胶原”组成的新型蛋白质复合水凝胶,并报告了它们不易通过单个蛋白质水凝胶实现的出色物理、机械和生物学特性。这些特性包括 i)在很宽的组成范围内加速凝胶化,ii)模仿从软组织到硬组织的 0.1 kPa 至 20 kPa 的刚度水平,iii)在各种应力模式(弯曲、扭曲、拉伸和压缩)下具有出色的弹性行为,iv)对细胞介导的凝胶收缩具有很高的抵抗力,v)细胞快速附着和扩展,以及 vi)具有长期生存能力的细胞封装能力。这些结果来自于具有α-螺旋和β-折叠结构网络的单个蛋白质的协同作用。我们认为,当前具有弹性的细胞包封丝-胶原水凝胶可潜在用于从软组织到硬组织的广泛范围内的细胞输送和组织工程。