Suppr超能文献

对多次出血的心血管调节:分析与参数估计

Cardiovascular regulation in response to multiple hemorrhages: analysis and parameter estimation.

作者信息

Ciocanel Maria-Veronica, Docken Steffen S, Gasper Rebecca E, Dean Caron, Carlson Brian E, Olufsen Mette S

机构信息

The Ohio State University, Columbus, USA.

University of California, Davis, Davis, USA.

出版信息

Biol Cybern. 2019 Apr;113(1-2):105-120. doi: 10.1007/s00422-018-0781-y. Epub 2018 Sep 12.

Abstract

Mathematical models can provide useful insights explaining behavior observed in experimental data; however, rigorous analysis is needed to select a subset of model parameters that can be informed by available data. Here we present a method to estimate an identifiable set of parameters based on baseline left ventricular pressure and volume time series data. From this identifiable subset, we then select, based on current understanding of cardiovascular control, parameters that vary in time in response to blood withdrawal, and estimate these parameters over a series of blood withdrawals. These time-varying parameters are first estimated using piecewise linear splines minimizing the mean squared error between measured and computed left ventricular pressure and volume data over four consecutive blood withdrawals. As a final step, the trends in these splines are fit with empirical functional expressions selected to describe cardiovascular regulation during blood withdrawal. Our analysis at baseline found parameters representing timing of cardiac contraction, systemic vascular resistance, and cardiac contractility to be identifiable. Of these parameters, vascular resistance and cardiac contractility were varied in time. Data used for this study were measured in a control Sprague-Dawley rat. To our knowledge, this is the first study to analyze the response to multiple blood withdrawals both experimentally and theoretically, as most previous studies focus on analyzing the response to one large blood withdrawal. Results show that during each blood withdrawal both systemic vascular resistance and contractility decrease acutely and partially recover, and they decrease chronically across the series of blood withdrawals.

摘要

数学模型可以提供有用的见解来解释实验数据中观察到的行为;然而,需要进行严格的分析来选择一组可以由现有数据提供信息的模型参数。在这里,我们提出了一种基于基线左心室压力和容积时间序列数据来估计一组可识别参数的方法。然后,根据目前对心血管控制的理解,从这个可识别的子集中选择随时间变化以响应失血的参数,并在一系列失血过程中估计这些参数。这些随时间变化的参数首先使用分段线性样条进行估计,以最小化连续四次失血过程中测量的和计算得到的左心室压力和容积数据之间的均方误差。作为最后一步,这些样条的趋势与为描述失血期间心血管调节而选择的经验函数表达式进行拟合。我们在基线时的分析发现,代表心脏收缩时间、全身血管阻力和心脏收缩力的参数是可识别的。在这些参数中,血管阻力和心脏收缩力随时间变化。本研究使用的数据是在对照的斯普拉格-道利大鼠中测量的。据我们所知,这是第一项从实验和理论上分析对多次失血反应的研究,因为大多数先前的研究都集中在分析对一次大量失血的反应。结果表明,在每次失血过程中,全身血管阻力和收缩力都会急剧下降并部分恢复,并且在一系列失血过程中会长期下降。

相似文献

1
Cardiovascular regulation in response to multiple hemorrhages: analysis and parameter estimation.
Biol Cybern. 2019 Apr;113(1-2):105-120. doi: 10.1007/s00422-018-0781-y. Epub 2018 Sep 12.
2
Assessment of left ventricular viscoelastic components based on ventricular harmonic behavior.
Cardiovasc Eng. 2006 Mar;6(1):30-9. doi: 10.1007/s10558-006-9001-9.
3
Age-related changes in pumping mechanical behavior of rat ventricle in terms of systolic elastance and resistance.
J Gerontol A Biol Sci Med Sci. 2000 Sep;55(9):B440-7. doi: 10.1093/gerona/55.9.b440.
5
Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model.
Math Biosci. 2018 Oct;304:9-24. doi: 10.1016/j.mbs.2018.07.001. Epub 2018 Jul 11.
8
Blood flow, vascular resistance, and blood volume after hemorrhage in conscious adrenalectomized rat.
J Appl Physiol (1985). 1997 Nov;83(5):1648-53. doi: 10.1152/jappl.1997.83.5.1648.
9
Changes in regional vascular resistance and blood volume after hemorrhage in fed and fasted awake rats.
J Appl Physiol (1985). 1995 Jun;78(6):2025-32. doi: 10.1152/jappl.1995.78.6.2025.
10
Finite state machine implementation for left ventricle modeling and control.
Biomed Eng Online. 2019 Jan 30;18(1):10. doi: 10.1186/s12938-019-0628-3.

本文引用的文献

1
Practical identifiability and uncertainty quantification of a pulsatile cardiovascular model.
Math Biosci. 2018 Oct;304:9-24. doi: 10.1016/j.mbs.2018.07.001. Epub 2018 Jul 11.
2
Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt.
IEEE Trans Biomed Eng. 2015 Aug;62(8):1992-2000. doi: 10.1109/TBME.2015.2409211. Epub 2015 Mar 5.
4
Modeling the afferent dynamics of the baroreflex control system.
PLoS Comput Biol. 2013;9(12):e1003384. doi: 10.1371/journal.pcbi.1003384. Epub 2013 Dec 12.
5
Patient-specific modelling of head-up tilt.
Math Med Biol. 2014 Dec;31(4):365-92. doi: 10.1093/imammb/dqt004. Epub 2013 Aug 18.
7
Structural identifiability of systems biology models: a critical comparison of methods.
PLoS One. 2011;6(11):e27755. doi: 10.1371/journal.pone.0027755. Epub 2011 Nov 22.
8
ON IDENTIFIABILITY OF NONLINEAR ODE MODELS AND APPLICATIONS IN VIRAL DYNAMICS.
SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39. doi: 10.1137/090757009.
9
Geometry of nonlinear least squares with applications to sloppy models and optimization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Mar;83(3 Pt 2):036701. doi: 10.1103/PhysRevE.83.036701. Epub 2011 Mar 3.
10
Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat.
Physiol Genomics. 2010 Jun;42(1):23-41. doi: 10.1152/physiolgenomics.00027.2010. Epub 2010 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验