Suppr超能文献

建立压力感受性反射控制系统传入动力学模型。

Modeling the afferent dynamics of the baroreflex control system.

机构信息

Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America.

Department of Science, Systems, and Models, Roskilde University, Roskilde, Denmark.

出版信息

PLoS Comput Biol. 2013;9(12):e1003384. doi: 10.1371/journal.pcbi.1003384. Epub 2013 Dec 12.

Abstract

In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods.

摘要

在这项研究中,我们开发了一个用于预测血压作为函数的压力感受器放电率的建模框架。我们使用来自大鼠的数据对该框架内的模型进行了定量和定性测试。该模型描述了三个组成部分:动脉壁变形、位于 BR 神经末梢的机械感受器的刺激以及动作电位频率的调制。这三个子系统是按照既定的生物学原理分别建模的。第一个子模型,预测动脉壁变形,将血压作为输入,并输出周向应变。机械感受器刺激模型,将周向应变作为输入,预测感受器变形作为输出。最后,神经模型以感受器变形作为输入,预测 BR 放电率作为输出。我们的结果表明,通过考虑动脉壁的非线性弹性特性,可以解释放电率对压力的非线性依赖性。当使用一组参数的多个实验来测试模型时,观察到了这一点。我们发现,为了对正方形压力刺激的响应进行建模,从而产生兴奋后抑制,有必要包含一个积分和点火模型,该模型允许当刺激低于给定阈值时,放电率停止。我们表明,我们的建模框架结合灵敏度分析和参数估计可以用于测试和比较模型。最后,我们证明我们的首选模型可以表现出所有已知的动力学,并且结合定性和定量分析方法是有利的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57fd/3861044/dc1f2f2bdae1/pcbi.1003384.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验