Suppr超能文献

基于纳米颗粒辅助的大规模光刻技术的低成本纳米结构显著提高了固体界面间热能传输效率。

Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.

出版信息

ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34690-34698. doi: 10.1021/acsami.8b08180. Epub 2018 Sep 26.

Abstract

Enhancing thermal energy transport across solid interfaces is of critical importance to a wide variety of applications ranging from energy systems and lighting devices to electronics. Nanoscale surface roughness is usually considered detrimental to interfacial thermal transport because of its role in phonon scattering. In this study, however, we demonstrate significant thermal conductance enhancements across metal-semiconductor interfaces by as much as 90% higher than that of the planar interfaces using engineered nanostructures fabricated by Au nanoparticle (NP)-assisted lithography, where self-assembled Au NPs are used as an efficient etching mask to pattern solid substrates over large surface areas. The enlarged interfacial contact area due to the presence of nanostructures is the main reason for the significantly enhanced thermal transport. It is further demonstrated that the conductance can be systematically tuned over a wide range through the use of the Au NP self-assembly process that is regulated by a sacrificial Sb layer whose thickness determines the size and density of the nanostructures produced. This strategy is tested on two technologically important semiconductors, Si and GaN, and their interfacial thermal conductance with Al being measured using the time-domain thermoreflectance technique. Moreover, the nanostructured interfaces can maintain the enhanced conductance for a temperature range of 30-110 °C-the operating temperatures commonly experienced by energy, lighting, and electronic devices. Our results could provide a wafer-scale and low-cost strategy for improving the thermal management of these devices.

摘要

增强固体界面之间的热能传递对于从能源系统和照明设备到电子学等各种应用都至关重要。纳米级表面粗糙度通常被认为不利于界面热传递,因为它会导致声子散射。然而,在这项研究中,我们通过使用金纳米粒子(NP)辅助光刻技术制造的工程纳米结构,证明了金属-半导体界面的热导率可以显著提高,最大可提高 90%,而平面界面的热导率则低于该值。纳米结构的存在导致界面接触面积增大,这是热传输显著增强的主要原因。进一步的研究表明,通过使用由牺牲 Sb 层调节的 Au NP 自组装过程,可以在很宽的范围内系统地调节电导,该 Sb 层的厚度决定了所产生的纳米结构的尺寸和密度。该策略在两种具有重要技术意义的半导体 Si 和 GaN 上进行了测试,并使用时域热反射技术测量了它们与 Al 的界面热导率。此外,纳米结构化界面可以在 30-110°C 的温度范围内保持增强的电导,这是能源、照明和电子设备通常经历的工作温度范围。我们的研究结果为改善这些器件的热管理提供了一种晶圆级和低成本的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验