The Key Laboratory of Fuel Cell for Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , China.
Electrochemical Energy Engineering Research Center of Guangdong Province , Guangzhou , 510640 , China.
Inorg Chem. 2018 Oct 1;57(19):12245-12254. doi: 10.1021/acs.inorgchem.8b01948. Epub 2018 Sep 13.
To overcome the problems faced by TiO materials for lithium-ion batteries usage, such as easy nanoparticles agglomeration during cycling and poor cycling performance, in this study, TiO nanorods with the controlled phase compositions are prepared via direct pyrolysis of single molecule precursors in combination with a simple washing process. By tuning the external cations in the single source precursors, three TiO samples in a nanorod shape with the compositions of pure anatase, anatase-rutile dual phase, and anatase-TiO(B) dual phase are synthesized successfully. High-resolution transmission electron microscopy, X-ray powder diffraction, and Raman measurements confirm the phase structures and compositions of the three prepared samples. The electrochemical results manifest that all the three nanorod-shaped TiO samples show the long-term cycling stability as negative materials for LIBs. Among them, the TiO sample with the combination of the anatase and TiO-B phase shows the best performance, with the specific capacity of ∼184, 164, 140, 105, 80, and 60 mAh g at 0.1, 0.3, 0.5, 1.5, 3.0, and 5.0 A g, respectively, and showing no capacity loss and low resistance after 1000 cycles at 1.5 A g. By the analysis of the cyclic voltammetry results recorded from different scan rates, the lithium-ion storage mechanism is clarified, which is dominated by the semi-infinite linear diffusion (anatase phase) in combination with the partial surface pseudocapacitive contribution [TiO(B) phase]. As a result, this sample shows a great potential as a negative material for LIBs because of its electrochemical stability, high specific capacity, and superior rate capability. The proof-of-concept design of the anatase and TiO-B dual phase may provide a new strategy for the synthesis of high performance TiO-based anode material for LIBs.
为了解决 TiO 材料在锂离子电池应用中面临的问题,如在循环过程中容易发生纳米颗粒团聚和循环性能差等问题,本研究通过单分子前体的直接热解结合简单的洗涤过程,制备了具有可控相组成的 TiO 纳米棒。通过调整单源前体中的外部阳离子,可以成功合成三种具有纯锐钛矿、锐钛矿-金红石双相和锐钛矿-TiO(B)双相组成的纳米棒形状的 TiO 样品。高分辨率透射电子显微镜、X 射线粉末衍射和拉曼测量证实了三种制备样品的相结构和组成。电化学结果表明,所有三种纳米棒形状的 TiO 样品作为锂离子电池的负极材料均表现出长期循环稳定性。其中,具有锐钛矿和 TiO-B 相组合的 TiO 样品表现出最佳性能,在 0.1、0.3、0.5、1.5、3.0 和 5.0 A g 下的比容量分别约为 184、164、140、105、80 和 60 mAh g,在 1.5 A g 下循环 1000 次后无容量损失和低电阻。通过对不同扫描速率下记录的循环伏安法结果进行分析,阐明了锂离子存储机制,该机制主要由半无限线性扩散(锐钛矿相)与部分表面赝电容贡献[TiO(B)相]相结合。因此,由于其电化学稳定性、高比容量和优异的倍率性能,该样品作为锂离子电池负极材料具有很大的潜力。锐钛矿和 TiO-B 双相的概念验证设计为合成高性能 TiO 基锂离子电池负极材料提供了新的策略。