State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1, Bei Er Tiao, Zhongguancun, Beijing, 100190, P. R. China.
Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, No. 30, Xueyuan Road, Haidian District, Beijing, 100083, P. R. China.
Adv Mater. 2019 Mar;31(10):e1805754. doi: 10.1002/adma.201805754. Epub 2019 Jan 11.
TiO is a potential anode material for lithium-ion batteries due to its high rate capability and high safety. Here, a controllable synthesis for hollow nanostructured TiO , with heterostructured shells of TiO (B) and anatase phases, is presented for the first time, by using a sequential templating approach. The hollow nanostructures can be easily controlled to produce core-shell and double-shelled materials with different compositional ratios of anatase to TiO (B) by tuning the synthetic conditions. When used as the anode materials for lithium-ion batteries, a specific discharge capacity of 215.4 mAh g for the double-shelled anatase/TiO (B) hollow microspheres is achieved at a current rate of 1 C (335 mA g ) for the 100th cycle and shows high specific discharge capacities of 141.6 and 125.7 mAh g at the high rates of 10 and 20 C over 1000 cycles. These results are due to the unique stable hollow multishelled structure, which has a high specific surface area, as well as the interface between the heterostructured anatase/TiO (B) phases contributing a substantial number of lithium-ion storage sites.
TiO 是一种很有前途的锂离子电池阳极材料,因为它具有高倍率性能和高安全性。在这里,首次通过顺序模板法,提出了一种可控合成具有 TiO (B)和锐钛矿相异质结构壳的空心纳米结构 TiO 的方法。通过调整合成条件,可以很容易地控制空心纳米结构,以产生具有不同锐钛矿与 TiO (B)组成比的核壳和双壳材料。当用作锂离子电池的阳极材料时,双壳层锐钛矿/TiO (B)空心微球在 1 C(335 mA g)电流速率下的第 100 次循环中实现了 215.4 mAh g 的比放电容量,在 10 和 20 C 的高倍率下经过 1000 次循环后,仍具有高达 141.6 和 125.7 mAh g 的比放电容量。这些结果归因于独特的稳定空心多壳结构,它具有高比表面积,以及异质结构的锐钛矿/TiO (B)相之间的界面提供了大量的锂离子存储位。