Mohammad Ebrahimi Iman, Nosratinia Ferial, Rashidi Ali Morad, Ardjamand Mehdi
Department of Chemical Engineering, ST.C., Islamic Azad University, Tehran, Iran.
Nanotechnology Research Center, Research Institute of Petroleum Industry, Tehran, Iran.
Sci Rep. 2025 Aug 25;15(1):31185. doi: 10.1038/s41598-025-14934-9.
Hydrogen sulfide (HS) is a highly toxic gas commonly encountered in petroleum refining and natural gas processing. Its selective oxidation to elemental sulfur is a promising approach for mitigating environmental and operational hazards, but achieving high selectivity under mild conditions remains challenging. In this study, TiO nanorods doped with transition metals (Ni, Co, V, W) were synthesized via a hydrothermal-calcination route and evaluated for direct HS oxidation at 190 °C. Comprehensive characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller analysis (BET), and energy-dispersive X-ray spectroscopy (EDS) confirmed the successful incorporation of metal dopants. The 6 wt% V/TiO catalyst exhibited the best performance, achieving > 97.3% HS conversion and > 97.1% elemental sulfur selectivity over 14 h of continuous operation. This work introduces a robust nanocatalyst platform for low-temperature sulfur recovery and establishes an optimal dopant loading strategy to balance performance, cost, and stability. The novelty of this work lies in establishing a correlation between mesostructural evolution and catalytic efficiency, demonstrating the potential of doped TiO nanorods for scalable environmental applications.
硫化氢(HS)是石油炼制和天然气加工中常见的剧毒气体。将其选择性氧化为元素硫是减轻环境和操作危害的一种有前景的方法,但在温和条件下实现高选择性仍然具有挑战性。在本研究中,通过水热煅烧路线合成了掺杂过渡金属(Ni、Co、V、W)的TiO纳米棒,并在190°C下对其直接氧化HS的性能进行了评估。使用X射线衍射(XRD)、透射电子显微镜(TEM)、场发射扫描电子显微镜(FE-SEM)、X射线光电子能谱(XPS)、布鲁诺尔-埃米特-泰勒分析(BET)和能量色散X射线光谱(EDS)进行的综合表征证实了金属掺杂剂的成功掺入。6 wt% V/TiO催化剂表现出最佳性能,在连续运行14小时内实现了>97.3%的HS转化率和>97.1%的元素硫选择性。这项工作引入了一个用于低温硫回收的强大纳米催化剂平台,并建立了一种优化的掺杂剂负载策略,以平衡性能、成本和稳定性。这项工作的新颖之处在于建立了介观结构演变与催化效率之间的相关性,证明了掺杂TiO纳米棒在可扩展环境应用中的潜力。