Suppr超能文献

贝叶斯框架用于高效准确的变异预测。

A Bayesian framework for efficient and accurate variant prediction.

机构信息

Ambry Genetics, Aliso Viejo, California, United States of America.

出版信息

PLoS One. 2018 Sep 13;13(9):e0203553. doi: 10.1371/journal.pone.0203553. eCollection 2018.

Abstract

There is a growing need to develop variant prediction tools capable of assessing a wide spectrum of evidence. We present a Bayesian framework that involves aggregating pathogenicity data across multiple in silico scores on a gene-by-gene basis and multiple evidence statistics in both quantitative and qualitative forms, and performs 5-tiered variant classification based on the resulting probability credible interval. When evaluated in 1,161 missense variants, our gene-specific in silico model-based meta-predictor yielded an area under the curve (AUC) of 96.0% and outperformed all other in silico predictors. Multifactorial model analysis incorporating all available evidence yielded 99.7% AUC, with 22.8% predicted as variants of uncertain significance (VUS). Use of only 3 auto-computed evidence statistics yielded 98.6% AUC with 56.0% predicted as VUS, which represented sufficient accuracy to rapidly assign a significant portion of VUS to clinically meaningful classifications. Collectively, our findings support the use of this framework to conduct large-scale variant prioritization using in silico predictors followed by variant prediction and classification with a high degree of predictive accuracy.

摘要

人们越来越需要开发能够评估广泛证据的变异预测工具。我们提出了一个贝叶斯框架,该框架涉及在基因基础上跨多个计算分数和多种定量和定性形式的证据统计数据聚合致病性数据,并根据产生的概率置信区间进行 5 级变异分类。在对 1161 个错义变异进行评估时,我们基于基因特异性的计算模型元预测器的曲线下面积 (AUC) 为 96.0%,优于所有其他计算预测器。结合所有可用证据的多因素模型分析产生了 99.7%的 AUC,其中 22.8%被预测为不确定意义的变异 (VUS)。仅使用 3 种自动计算的证据统计数据可获得 98.6%的 AUC,其中 56.0%被预测为 VUS,这足以快速将 VUS 的很大一部分分配到具有临床意义的分类中。总的来说,我们的研究结果支持使用该框架使用计算预测器进行大规模变异优先级排序,然后进行具有高度预测准确性的变异预测和分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c767/6136750/80e41ccbb140/pone.0203553.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验