Suppr超能文献

利用深度卷积神经网络对不确定意义变异进行功能测定的新系统。

A Novel System for Functional Determination of Variants of Uncertain Significance using Deep Convolutional Neural Networks.

机构信息

NovellusDx, Jerusalem, 9112001, Israel.

出版信息

Sci Rep. 2020 Mar 6;10(1):4192. doi: 10.1038/s41598-020-61173-1.

Abstract

Many drugs are developed for commonly occurring, well studied cancer drivers such as vemurafenib for BRAF V600E and erlotinib for EGFR exon 19 mutations. However, most tumors also harbor mutations which have an uncertain role in disease formation, commonly called Variants of Uncertain Significance (VUS), which are not studied or characterized and could play a significant role in drug resistance and relapse. Therefore, the determination of the functional significance of VUS and their response to Molecularly Targeted Agents (MTA) is essential for developing new drugs and predicting response of patients. Here we present a multi-scale deep convolutional neural network (DCNN) architecture combined with an in-vitro functional assay to investigate the functional role of VUS and their response to MTA's. Our method achieved high accuracy and precision on a hold-out set of examples (0.98 mean AUC for all tested genes) and was used to predict the oncogenicity of 195 VUS in 6 genes. 63 (32%) of the assayed VUS's were classified as pathway activating, many of them to a similar extent as known driver mutations. Finally, we show that responses of various mutations to FDA approved MTAs are accurately predicted by our platform in a dose dependent manner. Taken together this novel system can uncover the treatable mutational landscape of a drug and be a useful tool in drug development.

摘要

许多药物是针对常见且研究充分的癌症驱动基因开发的,例如针对 BRAF V600E 的 vemurafenib 和针对 EGFR 外显子 19 突变的 erlotinib。然而,大多数肿瘤还存在在疾病形成中作用不确定的突变,通常称为意义不确定的变异体(Variant of Uncertain Significance,VUS),这些变异体没有被研究或表征,可能在耐药性和复发中起重要作用。因此,确定 VUS 的功能意义及其对分子靶向药物(Molecularly Targeted Agents,MTA)的反应对于开发新药和预测患者的反应至关重要。在这里,我们提出了一种多尺度深度卷积神经网络(DCNN)架构,结合体外功能测定,来研究 VUS 的功能作用及其对 MTA 的反应。我们的方法在一组保留样本上实现了高精度和高准确性(所有测试基因的平均 AUC 为 0.98),并用于预测 6 个基因中的 195 个 VUS 的致癌性。在检测到的 VUS 中,有 63 个(32%)被归类为通路激活,其中许多与已知的驱动突变具有相似的程度。最后,我们表明,我们的平台可以准确地预测各种突变对 FDA 批准的 MTA 的反应,呈剂量依赖性。总的来说,这个新系统可以揭示药物的可治疗突变景观,并成为药物开发的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60e1/7060242/4bd0a8c2e010/41598_2020_61173_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验