Suppr超能文献

协变量调整的精度矩阵估计及其在遗传基因组学中的应用

Covariate-Adjusted Precision Matrix Estimation with an Application in Genetical Genomics.

作者信息

Cai T Tony, Li Hongzhe, Liu Weidong, Xie Jichun

机构信息

Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.

出版信息

Biometrika. 2013 Mar;100(1):139-156. doi: 10.1093/biomet/ass058. Epub 2012 Nov 30.

Abstract

Motivated by analysis of genetical genomics data, we introduce a sparse high dimensional multivariate regression model for studying conditional independence relationships among a set of genes adjusting for possible genetic effects. The precision matrix in the model specifies a covariate-adjusted Gaussian graph, which presents the conditional dependence structure of gene expression after the confounding genetic effects on gene expression are taken into account. We present a covariate-adjusted precision matrix estimation method using a constrained ℓ minimization, which can be easily implemented by linear programming. Asymptotic convergence rates in various matrix norms and sign consistency are established for the estimators of the regression coefficients and the precision matrix, allowing both the number of genes and the number of the genetic variants to diverge. Simulation shows that the proposed method results in significant improvements in both precision matrix estimation and graphical structure selection when compared to the standard Gaussian graphical model assuming constant means. The proposed method is also applied to analyze a yeast genetical genomics data for the identification of the gene network among a set of genes in the mitogen-activated protein kinase pathway.

摘要

受遗传基因组学数据分析的启发,我们引入了一种稀疏高维多元回归模型,用于研究一组基因之间的条件独立关系,并对可能的遗传效应进行调整。模型中的精度矩阵指定了一个协变量调整后的高斯图,它呈现了在考虑基因表达上的混杂遗传效应后基因表达的条件依赖结构。我们提出了一种使用约束ℓ最小化的协变量调整精度矩阵估计方法,该方法可以通过线性规划轻松实现。为回归系数和精度矩阵的估计量建立了各种矩阵范数下的渐近收敛速度和符号一致性,允许基因数量和遗传变异数量都发散。模拟表明,与假设均值恒定的标准高斯图形模型相比,所提出的方法在精度矩阵估计和图形结构选择方面都有显著改进。所提出的方法还应用于分析酵母遗传基因组学数据,以识别丝裂原活化蛋白激酶途径中一组基因之间的基因网络。

相似文献

4
Learning directed acyclic graphical structures with genetical genomics data.利用遗传基因组学数据学习有向无环图结构
Bioinformatics. 2015 Dec 15;31(24):3953-60. doi: 10.1093/bioinformatics/btv513. Epub 2015 Sep 2.
7
High-Dimensional Gaussian Graphical Regression Models with Covariates.具有协变量的高维高斯图形回归模型
J Am Stat Assoc. 2023;118(543):2088-2100. doi: 10.1080/01621459.2022.2034632. Epub 2022 Mar 14.
8
Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models.联合学习多个稀疏矩阵高斯图模型。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2606-20. doi: 10.1109/TNNLS.2014.2384201. Epub 2015 Mar 4.

引用本文的文献

2
Connectivity Regression.连通性回归
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
3
Covariate-Assisted Bayesian Graph Learning for Heterogeneous Data.用于异构数据的协变量辅助贝叶斯图学习
J Am Stat Assoc. 2024;119(547):1985-1999. doi: 10.1080/01621459.2023.2233744. Epub 2023 Sep 6.

本文引用的文献

1
Sparse Multivariate Regression With Covariance Estimation.带协方差估计的稀疏多元回归
J Comput Graph Stat. 2010 Fall;19(4):947-962. doi: 10.1198/jcgs.2010.09188.
7
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
10
The landscape of genetic complexity across 5,700 gene expression traits in yeast.酵母中5700个基因表达性状的遗传复杂性全景。
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1572-7. doi: 10.1073/pnas.0408709102. Epub 2005 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验