Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA.
Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK.
Open Biol. 2022 Jul;12(7):220041. doi: 10.1098/rsob.220041. Epub 2022 Jul 13.
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
转运蛋白是细胞与其环境之间的重要界面。在营养有限的环境中,具有高效转运底物进入细胞的转运蛋白的微生物将比转运功能降低的变体具有竞争优势。微生物铵转运蛋白(Amt)将铵从周围的周质空间带入细胞质,但仅从序列数据诊断 Amt 对低营养环境的适应一直难以实现。在这里,我们报告了与从浅水区采样的变体相比,来自深海样本的 Amt 序列氨基酸分布的改变,这两个重要的海洋水柱群落微生物谱系是海洋 I 组古菌(Thermoproteota)和未培养的γ变形菌谱系 SAR86。这种模式表明,在深海环境中,这些进化枝的 Amt 朝着增加偶极子的方向进化的压力,预计这将产生更强的电场,有利于铵的获取。在能够利用替代氮源的谱系中,包括丰富的α变形菌谱系 SAR11,没有观察到这种偶极子电荷随深度增加的模式。我们推测,深海中铵的竞争驱动了转运蛋白序列的进化。因此,深海中铵的浓度较低可能是由于 Amts 的快速摄取与营养物质通量的减少同时发生。