Suppr超能文献

富镍Li[Ni Co Mn]O阴极在加速长期老化过程中的微观结构退化

Microstructural Degradation of Ni-Rich Li[Ni Co Mn ]O Cathodes During Accelerated Calendar Aging.

作者信息

Ryu Hoon-Hee, Park Geon-Tae, Yoon Chong S, Sun Yang-Kook

机构信息

Department of Energy Engineering, Hanyang University, Seoul, 133-791, South Korea.

Department of Materials Science and Engineering, Hanyang University, Seoul, 133-791, South Korea.

出版信息

Small. 2018 Nov;14(45):e1803179. doi: 10.1002/smll.201803179. Epub 2018 Sep 14.

Abstract

Because electric vehicles (EVs) are used intermittently with long resting periods in the fully charged state before driving, calendar aging behavior is an important criterion for the application of Li-ion batteries used in EVs. In this work, Ni-rich Li[Ni Co Mn ]O (x = 0.8 and 0.9) cathode materials with high energy densities, but low cycling stabilities are investigated to characterize their microstructural degradation during accelerated calendar aging. Although the particles seem to maintain their crystal structures and morphologies, the microcracks which develop during calendar aging remain even in the fully discharged state. An NiO-like phase rock-salt structure of tens of nanometers in thickness accumulates on the surfaces of the primary particles through parasitic reactions with the electrolyte. In addition, the passive layer of this rock-salt structure near the microcracks is gradually exfoliated from the primary particles, exposing fresh surfaces containing Ni to the electrolyte. Interestingly, the interior primary particles near the microcracks have deteriorated more severely than the outer particles. The microstructural degradation is worsened with increasing Ni contents in the cathode materials, directly affecting electrochemical performances such as the reversible capacities and voltage profiles.

摘要

由于电动汽车(EV)在行驶前处于充满电状态时会间歇性使用且有较长的静置期,日历老化行为是电动汽车所用锂离子电池应用的一个重要标准。在这项工作中,研究了具有高能量密度但循环稳定性低的富镍Li[Ni Co Mn ]O(x = 0.8和0.9)正极材料,以表征其在加速日历老化过程中的微观结构退化。尽管颗粒似乎保持了它们的晶体结构和形态,但在日历老化过程中产生的微裂纹即使在完全放电状态下仍然存在。通过与电解质的寄生反应,厚度为几十纳米的类NiO相岩盐结构在一次颗粒表面堆积。此外,微裂纹附近这种岩盐结构的钝化层逐渐从一次颗粒上剥落,使含有Ni的新鲜表面暴露于电解质中。有趣的是,微裂纹附近的内部一次颗粒比外部颗粒恶化得更严重。随着正极材料中Ni含量的增加,微观结构退化加剧,直接影响诸如可逆容量和电压曲线等电化学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验