Savina Aleksandra A, Orlova Elena D, Morozov Anatolii V, Luchkin Sergey Yu, Abakumov Artem M
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205 Moscow, Russia.
Nanomaterials (Basel). 2020 Nov 29;10(12):2381. doi: 10.3390/nano10122381.
Composite positive electrode materials (1-) LiNiMnCoO∙LiSO ( = 0.002-0.005) for Li-ion batteries have been synthesized via conventional hydroxide or carbonate coprecipitation routes with subsequent high-temperature lithiation in either air or oxygen atmosphere. A comparative study of the materials prepared from transition metal sulfates (i.e., containing sulfur) and acetates (i.e., sulfur-free) with powder X-ray diffraction, electron diffraction, high angle annular dark field transmission electron microscopy, energy-dispersive X-ray spectroscopy, and electron energy loss spectroscopy revealed that the sulfur-containing species occur as amorphous LiSO at the grain boundaries and intergranular contacts of the primary NMC811 crystallites. This results in a noticeable enhancement of rate capability and capacity retention over prolonged charge/discharge cycling compared to their sulfur-free analogs. The improvement is attributed to suppressing the high voltage phase transition and the associated accumulation of anti-site disorder upon cycling and improving the secondary agglomerates' mechanical integrity by increasing interfacial fracture toughness through linking primary NMC811 particles with soft LiSO binder, as demonstrated with nanoindentation experiments. As the synthesis of the (1-) LiNiMnCoO∙LiSO composites do not require additional operational steps to introduce sulfur, these electrode materials might demonstrate high potential for commercialization.
通过传统的氢氧化物或碳酸盐共沉淀法,随后在空气或氧气气氛中进行高温锂化,合成了用于锂离子电池的复合正极材料(1 -)LiNiMnCoO∙Li₂SO₄( = 0.002 - 0.005)。通过粉末X射线衍射、电子衍射、高角度环形暗场透射电子显微镜、能量色散X射线光谱和电子能量损失光谱对由过渡金属硫酸盐(即含硫)和醋酸盐(即无硫)制备的材料进行的对比研究表明,含硫物种以非晶态Li₂SO₄的形式出现在初级NMC811微晶的晶界和晶间接触处。与无硫类似物相比,这导致在长时间的充放电循环中倍率性能和容量保持率有显著提高。这种改善归因于抑制了高电压相变和循环过程中相关的反位无序积累,并通过用软Li₂SO₄粘结剂连接初级NMC811颗粒来提高界面断裂韧性,从而改善二次团聚体的机械完整性,纳米压痕实验证明了这一点。由于(1 -)LiNiMnCoO∙Li₂SO₄复合材料的合成不需要额外的操作步骤来引入硫,这些电极材料可能具有很高的商业化潜力。