Suppr超能文献

Mammalian beta 1- and beta 2-adrenergic receptors. Immunological and structural comparisons.

作者信息

Moxham C P, George S T, Graziano M P, Brandwein H J, Malbon C C

出版信息

J Biol Chem. 1986 Nov 5;261(31):14562-70.

PMID:3021744
Abstract

Beta 1- and beta 2-adrenergic receptors, pharmacologically distinct proteins, have been reported to be structurally dissimilar. In the present study three techniques were employed to compare the nature of mammalian beta 1- and beta 2-adrenergic receptors. Antibodies against each of the receptor subtypes were raised separately. Polyclonal antisera against beta 1-receptors of rat fat cells were raised in mice, and antisera against beta 2-receptors of guinea pig lung were raised in rabbits. Receptors purified from rat fat cells (beta 1-), S49 mouse lymphoma cells (beta 2-), and rat liver (beta 2-) were probed with these antisera. Each anti-receptor antisera demonstrated the ability to immunoprecipitate purified receptors of both beta 1- and beta 2- subtypes. The mobility of beta-receptors subjected to polyacrylamide gel electrophoresis was probed using antireceptor antibodies and nitrocellulose blots of the gels. Fat cell beta 1-adrenergic receptors display Mr = 67,000 under reducing conditions and Mr = 54,000 under nonreducing conditions, as previously reported (Moxham, C. P., and Malbon, C. C. (1985) Biochemistry 24, 6072-6077). Both beta 1- and beta 2-receptors displayed this same shift in electrophoretic mobility observed in the presence as compared to the absence of disulfide bridge-reducing agents, as detected both by autoradiography of the radiolabeled receptors and by immunoblotting of native receptors. Finally, isoelectric focusing of purified radioiodinated beta 1- and beta 2-adrenergic receptors revealed identical isoelectric points. These data are the first to provide analyses of immunological, structural, and biochemical features of beta 1- and beta 2-subtypes in tandem and underscore the structural similarities that exist between these pharmacologically distinct receptors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验