Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
Integrative Bioinformatics, Inc., Mountain View, California.
Biophys J. 2018 Oct 2;115(7):1146-1155. doi: 10.1016/j.bpj.2018.08.007. Epub 2018 Aug 17.
The saga of fluorescence recovery after photobleaching (FRAP) illustrates how disparate technical developments impact science. Starting with the classic 1976 Axelrod et al. work in Biophysical Journal, FRAP (originally fluorescence photobleaching recovery) opened the door to extraction of quantitative information from photobleaching experiments, laying the experimental and theoretical groundwork for quantifying both the mobility and the mobile fraction of a labeled population of proteins. Over the ensuing years, FRAP's reach dramatically expanded, with new developments in GFP technology and turn-key confocal microscopy, which enabled measurement of protein diffusion and binding/dissociation rates in virtually every compartment within the cell. The FRAP technique and data catalyzed an exchange of ideas between biophysicists studying membrane dynamics, cell biologists focused on intracellular dynamics, and systems biologists modeling the dynamics of cell activity. The outcome transformed the field of cellular biology, leading to a fundamental rethinking of long-held theories of cellular dynamism. Here, we review the pivotal FRAP studies that made these developments and conceptual changes possible, which gave rise to current models of complex cell dynamics.
荧光漂白恢复(FRAP)的传奇故事说明了不同的技术发展如何影响科学。从 1976 年 Axelrod 等人在《生物物理学杂志》上的经典著作开始,FRAP(最初称为荧光漂白恢复)为从漂白实验中提取定量信息开辟了道路,为量化标记蛋白群体的流动性和可动分数奠定了实验和理论基础。在随后的几年里,FRAP 的应用范围急剧扩大,GFP 技术和一键式共聚焦显微镜的新发展使几乎在细胞内的每个隔室都能够测量蛋白质的扩散和结合/解离速率。FRAP 技术和数据促进了研究膜动力学的生物物理学家、专注于细胞内动力学的细胞生物学家以及对细胞活动动力学进行建模的系统生物学家之间的思想交流。其结果改变了细胞生物学领域,导致对长期以来关于细胞动态性的理论进行了根本性的重新思考。在这里,我们回顾了促成这些发展和概念变化的关键 FRAP 研究,这些研究导致了目前对复杂细胞动力学的模型的建立。