de Oliveira Luciana Renata, Fernandes Matheus Gimenez, Patane José Salvatore Leister, Schwartz Jean-Marc, Krieger José Eduardo, Ballestrem Christoph, Miyakawa Ayumi Aurea
Laboratório de Genetica e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Front Mol Biosci. 2025 May 6;12:1587608. doi: 10.3389/fmolb.2025.1587608. eCollection 2025.
The dynamic behavior of proteins within cellular structures can be studied using fluorescence recovery after photobleaching (FRAP) and fluorescence loss after photobleaching (FLAP) experiments. These techniques provide insights into molecular mobility by estimating parameters such as turnover rates and diffusion coefficients (D). However, traditional deterministic models often rely on simplifying assumptions that may not fully capture the stochastic nature of molecular interactions. In this study, we developed a novel stochastic model based on the analytical solution of the chemical master equation to extract dynamic parameters from FRAP and FLAP experiments in the focal adhesion (FA) network. Our approach extends beyond standard FRAP/FLAP analysis by inferring additional parameters, such as protein-specific entry and exit rates, allowing a deeper understanding of protein turnover and interactions. To validate our model, we analyzed previously published experimental data from NIH3T3 fibroblasts expressing GFP-tagged FA proteins, including tensin 1, talin, vinculin, -actinin, ILK, -parvin, kindlin-2, paxillin, p130Cas, VASP, FAK, and zyxin. These proteins participate in mechanotransduction, cytoskeletal organization, and adhesion regulation, exhibiting distinct dynamic behaviors within FA structures. Furthermore, we constructed an interaction network to quantify how vinculin and actin influence talin dynamics, leveraging our model to uncover their regulatory roles in FA turnover. Using an analytical solution of the chemical master equation, our framework provides a generalizable approach for studying protein dynamics in any system where FRAP and FLAP data are available. It can be applied to new experimental datasets and reanalyzed from existing data, revealing previously inaccessible molecular interactions and enhancing our understanding of FA dynamics and broader cellular processes.
可以使用光漂白后荧光恢复(FRAP)和光漂白后荧光损失(FLAP)实验来研究细胞结构内蛋白质的动态行为。这些技术通过估计周转率和扩散系数(D)等参数,深入了解分子流动性。然而,传统的确定性模型通常依赖于简化假设,可能无法完全捕捉分子相互作用的随机性。在本研究中,我们基于化学主方程的解析解开发了一种新型随机模型,以从粘着斑(FA)网络中的FRAP和FLAP实验中提取动态参数。我们的方法超越了标准的FRAP/FLAP分析,通过推断额外的参数,如蛋白质特异性的进入和退出速率,从而更深入地理解蛋白质周转和相互作用。为了验证我们的模型,我们分析了先前发表的来自表达绿色荧光蛋白标记的FA蛋白的NIH3T3成纤维细胞的实验数据,这些蛋白包括张力蛋白1、踝蛋白、纽蛋白、α辅肌动蛋白、整合素连接激酶、β-帕文、亲环素-2、桩蛋白、p130Cas、血管舒张刺激蛋白、黏着斑激酶和斑联蛋白。这些蛋白质参与机械转导、细胞骨架组织和粘附调节,在FA结构中表现出不同的动态行为。此外,我们构建了一个相互作用网络,以量化纽蛋白和肌动蛋白如何影响踝蛋白的动态,利用我们的模型揭示它们在FA周转中的调节作用。通过化学主方程的解析解,我们的框架为在任何可获得FRAP和FLAP数据的系统中研究蛋白质动态提供了一种可推广的方法。它可以应用于新的实验数据集,并从现有数据中重新分析,揭示以前无法获得的分子相互作用,增强我们对FA动态和更广泛细胞过程的理解。