Suppr超能文献

ClinPred:用于识别与疾病相关的非同义单核苷酸变异的预测工具。

ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants.

机构信息

Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada.

Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 5B2, Canada.

出版信息

Am J Hum Genet. 2018 Oct 4;103(4):474-483. doi: 10.1016/j.ajhg.2018.08.005. Epub 2018 Sep 13.

Abstract

Advances in high-throughput DNA sequencing have revolutionized the discovery of variants in the human genome; however, interpreting the phenotypic effects of those variants is still a challenge. While several computational approaches to predict variant impact are available, their accuracy is limited and further improvement is needed. Here, we introduce ClinPred, an efficient tool for identifying disease-relevant nonsynonymous variants. Our predictor incorporates two machine learning algorithms that use existing pathogenicity scores and, notably, benefits from inclusion of normal population allele frequency from the gnomAD database as an input feature. Another major strength of our approach is the use of ClinVar-a rapidly growing database that allows selection of confidently annotated disease-causing variants-as a training set. Compared to other methods, ClinPred showed superior accuracy for predicting pathogenicity, achieving the highest area under the curve (AUC) score and increasing both the specificity and sensitivity in different test datasets. It also obtained the best performance according to various other metrics. Moreover, ClinPred performance remained robust with respect to disease type (cancer or rare disease) and mechanism (gain or loss of function). Importantly, we observed that adding allele frequency as a predictive feature-as opposed to setting fixed allele frequency cutoffs-boosts the performance of prediction. We provide pre-computed ClinPred scores for all possible human missense variants in the exome to facilitate its use by the community.

摘要

高通量 DNA 测序的进步彻底改变了人类基因组中变异的发现;然而,解释这些变异的表型效应仍然是一个挑战。虽然有几种计算方法可用于预测变异的影响,但它们的准确性有限,需要进一步改进。在这里,我们介绍了 ClinPred,这是一种用于识别与疾病相关的非同义变异的有效工具。我们的预测器结合了两种机器学习算法,这些算法使用现有的致病性评分,并且值得注意的是,受益于包含 gnomAD 数据库中的正常人群等位基因频率作为输入特征。我们方法的另一个主要优势是使用 ClinVar——一个快速增长的数据库,允许选择有信心注释的致病变异——作为训练集。与其他方法相比,ClinPred 在预测致病性方面表现出更高的准确性,达到了最高的曲线下面积 (AUC) 评分,并在不同的测试数据集提高了特异性和敏感性。它还根据各种其他指标获得了最佳性能。此外,ClinPred 的性能在疾病类型(癌症或罕见疾病)和机制(功能获得或丧失)方面仍然稳健。重要的是,我们观察到,添加等位基因频率作为预测特征——而不是设置固定的等位基因频率截止值——可以提高预测性能。我们为外显子中的所有可能的人类错义变异提供了预先计算的 ClinPred 评分,以方便社区使用。

相似文献

5
Comparison of Pathogenicity Prediction Tools on Somatic Variants.体细胞变异致病性预测工具比较。
J Mol Diagn. 2020 Dec;22(12):1383-1392. doi: 10.1016/j.jmoldx.2020.08.007. Epub 2020 Oct 1.
8
Identifying Mendelian disease genes with the variant effect scoring tool.使用变异效应评分工具鉴定孟德尔疾病基因。
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S3. doi: 10.1186/1471-2164-14-S3-S3. Epub 2013 May 28.

引用本文的文献

本文引用的文献

1
Accurate classification of BRCA1 variants with saturation genome editing.饱和基因组编辑精准分类 BRCA1 变异。
Nature. 2018 Oct;562(7726):217-222. doi: 10.1038/s41586-018-0461-z. Epub 2018 Sep 12.
5
Settling the score: variant prioritization and Mendelian disease.清算旧账:变异体优先级排序与孟德尔疾病
Nat Rev Genet. 2017 Oct;18(10):599-612. doi: 10.1038/nrg.2017.52. Epub 2017 Aug 14.
7
ONGene: A literature-based database for human oncogenes.ONGene:一个基于文献的人类癌基因数据库。
J Genet Genomics. 2017 Feb 20;44(2):119-121. doi: 10.1016/j.jgg.2016.12.004. Epub 2016 Dec 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验