Suppr超能文献

一种控制理论系统辨识框架和用于电脑刺激的实时闭环临床模拟测试平台。

A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.

机构信息

Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, CA, United States of America.

出版信息

J Neural Eng. 2018 Dec;15(6):066007. doi: 10.1088/1741-2552/aad1a8. Epub 2018 Sep 17.

Abstract

OBJECTIVE

Closed-loop electrical brain stimulation systems may enable a precisely-tailored treatment for neurological and neuropsychiatric disorders by controlling the stimulation based on neural activity feedback in real time. Developing model-based closed-loop systems requires a principled system identification framework to quantify the effect of input stimulation on output neural activity by learning an input-output (IO) dynamic model from data. Further, developing these systems needs a realistic clinical simulation testbed to design and validate the closed-loop controllers derived from the IO models before testing in human patients.

APPROACH

First, we design a control-theoretic system identification framework to build dynamic IO models for neural activity that are amenable to closed-loop control design. To enable tractable model-based control, we use a data-driven linear state-space IO model that characterizes the effect of input on neural activity in terms of a low-dimensional hidden neural state. To learn the model parameters, we design a novel input waveform-a pulse train modulated by stochastic binary noise (BN) parameters-that we show is optimal for collecting informative IO datasets in system identification and conforms to clinical safety requirements. Second, we further extend this waveform to a generalized BN (GBN)-modulated waveform to reduce the required system identification time. Third, to enable extensive testing of system identification and closed-loop control, we develop a real-time closed-loop clinical hardware-in-the-loop (HIL) simulation testbed using the [Formula: see text] microelectrode recording and stimulation device, which incorporates stochastic noises, unknown disturbances and stimulation artifacts. Using this testbed, we implement both the system identification and the closed-loop controller by taking control of mood in depression as an example.

RESULTS

Testbed simulation results show that the closed-loop controller designed from IO models identified with the BN-modulated waveform achieves tight control, and performs similar to a controller that knows the true IO model of neural activity. When system identification time is limited, performance is further improved using the GBN-modulated waveform.

SIGNIFICANCE

The system identification framework with the new BN-modulated waveform and the clinical HIL simulation testbed can help develop future model-based closed-loop electrical brain stimulation systems for treatment of neurological and neuropsychiatric disorders.

摘要

目的

闭环电刺激系统可以通过实时控制刺激来实现针对神经和神经精神疾病的精确治疗,具体做法是根据神经活动的反馈来控制刺激。开发基于模型的闭环系统需要一个原则性的系统识别框架,以便通过从数据中学习输入-输出(IO)动态模型来量化输入刺激对输出神经活动的影响。此外,开发这些系统需要一个现实的临床模拟测试平台,以便在对人类患者进行测试之前,根据 IO 模型设计和验证闭环控制器。

方法

首先,我们设计了一个控制理论系统识别框架,用于构建适合闭环控制设计的神经活动动态 IO 模型。为了实现可处理的基于模型的控制,我们使用了一种数据驱动的线性状态空间 IO 模型,该模型根据输入对神经活动的影响,用低维隐藏神经状态来描述。为了学习模型参数,我们设计了一种新颖的输入波形,即由随机二进制噪声(BN)参数调制的脉冲串,我们证明这种输入波形在系统识别中能够收集信息丰富的 IO 数据集,并且符合临床安全要求。其次,我们进一步将该波形扩展为广义 BN(GBN)调制波形,以减少系统识别所需的时间。第三,为了能够广泛地测试系统识别和闭环控制,我们使用[公式]微电极记录和刺激设备开发了一个实时闭环临床硬件在环(HIL)模拟测试平台,该平台结合了随机噪声、未知干扰和刺激伪影。使用该测试平台,我们通过控制抑郁情绪为例,实现了系统识别和闭环控制器的设计。

结果

测试平台仿真结果表明,基于 IO 模型设计的闭环控制器采用 BN 调制波形可以实现紧密控制,并且与已知神经活动真实 IO 模型的控制器性能相似。当系统识别时间有限时,使用 GBN 调制波形可以进一步提高性能。

意义

具有新型 BN 调制波形的系统识别框架和临床 HIL 模拟测试平台可以帮助开发用于治疗神经和神经精神疾病的基于模型的闭环电刺激系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验