Yang Yuxiao, Shanechi Maryam M
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2087-90. doi: 10.1109/EMBC.2015.7318799.
Modeling and identification of brain network dynamics is of great importance both for understanding brain function and for closed-loop control of brain states. In this work, we present a multi-input-multi-output (MIMO) linear state-space model (LSSM) to describe the brain network dynamics in response to electrical stimulation. The LSSM maps the parameters of electrical stimulation, such as frequency, amplitude and pulse-width to recorded brain signals such as electrocorticography (ECoG) and electroencephalography (EEG). Effective identification of the LSSM in open-loop stimulation experiments, however, is strongly dependent on the open-loop input stimulation design. We propose a novel input design to accurately identify the LSSM by integrating the concept of binary noise (BN) with practical constraints on stimulation waveforms. The designed input pattern is a pulse train modulated by stochastic BN parameters. We show that this input pattern both satisfies the necessary spectral condition for accurate system identification and can incorporate any desired pulse shape. Using numerical experiments, we show that the quality of identification depends heavily on the input signal pattern and the proposed binary noise modulated pattern achieves satisfactory identification results, reducing the relative estimation error more than 300 times compared with step sequence modulated, single-sinusoid modulated and multi-sinusoids modulated input patterns.
大脑网络动力学的建模与识别对于理解大脑功能以及大脑状态的闭环控制都具有极其重要的意义。在这项工作中,我们提出了一种多输入多输出(MIMO)线性状态空间模型(LSSM)来描述大脑网络对电刺激的动力学响应。LSSM将电刺激的参数,如频率、幅度和脉宽,映射到记录的大脑信号,如皮层脑电图(ECoG)和脑电图(EEG)。然而,在开环刺激实验中对LSSM的有效识别强烈依赖于开环输入刺激设计。我们提出了一种新颖的输入设计,通过将二元噪声(BN)的概念与对刺激波形的实际约束相结合来准确识别LSSM。设计的输入模式是由随机BN参数调制的脉冲序列。我们表明,这种输入模式既满足准确系统识别所需的频谱条件,又可以包含任何所需的脉冲形状。通过数值实验,我们表明识别质量在很大程度上取决于输入信号模式,并且所提出的二元噪声调制模式取得了令人满意的识别结果,与阶跃序列调制、单正弦调制和多正弦调制输入模式相比,相对估计误差降低了300倍以上。